版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1估计的值在( )A2和3之间B3和4之间C4和
2、5之间D5和6之间2()A4B4C2D23为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:居民(户)1234月用电量(度/户)30425051那么关于这10户居民月用电量(单位:度),下列说法错误的是()A中位数是50B众数是51C方差是42D极差是214若一组数据2,3,5,7的众数为7,则这组数据的中位数为( )A2B3C5D75如图是某几何体的三视图及相关数据,则该几何体的全面积是()A15B24C20D106函数的图象上有两点,若,则( )ABCD、的大小不确定7如图,则的度数为( )A115B110C105D658对于任
3、意实数k,关于x的方程的根的情况为A有两个相等的实数根B没有实数根C有两个不相等的实数根D无法确定9一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A B C D 10下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A3cm,4cm,8cm B8cm,7cm,15cmC13cm,12cm,20cm D5cm,5cm,11cm二、填空题(本大题共6个小题,每小题3分,共18分)11如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为_ 12若
4、a+b=5,ab=3,则a2+b2=_13如图,等边三角形AOB的顶点A的坐标为(4,0),顶点B在反比例函数(x0)的图象上,则k= 14如图,点E在正方形ABCD的边CD上若ABE的面积为8,CE=3,则线段BE的长为_15把抛物线y=x22x+3沿x轴向右平移2个单位,得到的抛物线解析式为 16已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 三、解答题(共8题,共72分)17(8分)如图,AB是O的直径,点C是AB的中点,连接AC并延长至点D,使CDAC,点E是OB上一点,且OEEB=23,CE的延长线交DB的延长线于点F,AF交O于点H,连接BH求证:BD是O的切线;(
5、2)当OB2时,求BH的长18(8分)如图,在O中,弦AB与弦CD相交于点G,OACD于点E,过点B的直线与CD的延长线交于点F,ACBF(1)若FGB=FBG,求证:BF是O的切线;(2)若tanF=,CD=a,请用a表示O的半径;(3)求证:GF2GB2=DFGF19(8分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?20(8分) “低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某
6、单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?21(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图和图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_,图中m的值是_;(2)求本次调查获取的样本数据的
7、平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数22(10分)如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F(1)证明:BOEDOF;(2)当EFAC时,求证四边形AECF是菱形23(12分)如图,点D为O上一点,点C在直径BA的延长线上,且CDA=CBD判断直线CD和O的位置关系,并说明理由过点B作O的切线BE交直线CD于点E,若AC=2,O的半径是3,求BE的长24如图,抛物线y=+bx+c交x轴于点A(2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,
8、将线段CD绕点D旋转得到DE,过点E作直线lx轴,垂足为H,过点C作CFl于F,连接DF(1)求抛物线解析式;(2)若线段DE是CD绕点D顺时针旋转90得到,求线段DF的长;(3)若线段DE是CD绕点D旋转90得到,且点E恰好在抛物线上,请求出点E的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数为25,大于26的最小平方数为36,故,即:,故选择D.【点睛】本题考查了二次根式的相关定义.2、B【解析】表示16的算术平方根,为正数,再根据二次根式的性质化简【详解】解:,故选B【点睛】本题
9、考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个3、C【解析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51-30=21,方差为(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2=42.1故选C考点:1.方差;2.中位数;3.众数;4.极差4、C【解析】试题解析:这组数据的众数为7,x=7,则这组数据按照从小到大的顺序排列为:2
10、,3,1,7,7,中位数为:1故选C考点:众数;中位数.5、B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=()2=9,圆锥的侧面积=56=15,所以圆锥的全面积=9+15=24故选B点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了三视图6、A【解析】根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系【详解】解:y=-1x1-8x+m,此函数的对称轴为:x=-=-=-1,x1x1-1,两点都在对称轴左侧,a0,对称轴左侧y随x的增大而增大,y1y
11、1故选A【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键7、A【解析】根据对顶角相等求出CFB65,然后根据CDEB,判断出B115【详解】AFD65,CFB65,CDEB,B18065115,故选:A【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键8、C【解析】判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:a=1,b=,c=,此方程有两个不相等的实数根故选C9、B【解析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】依题意得P(朝上一面的数字是偶数)=故选B.【点睛】此题主要考
12、查概率的计算,解题的关键是熟知概率公式进行求解.10、C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】A、3+48,不能组成三角形;B、8+715,不能组成三角形;C、13+1220,能够组成三角形;D、5+511,不能组成三角形故选:C【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】设扇形的圆心角为n,则根据扇形的弧长公式有: ,解得 所以12、1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解解:a
13、+b=5,a2+2ab+b2=25,ab=3,a2+b2=1故答案为1考点:完全平方公式13、-4.【解析】过点B作BDx轴于点D,因为AOB是等边三角形,点A的坐标为(-4,0)所AOB=60,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BDx轴于点D,AOB是等边三角形,点A的坐标为(4,0),AOB=60,OB=OA=AB=4,OD= OB=2,BD=OBsin60=4=2,B(2,2 ),k=22 =4【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中14、5.【解析】试题解析:过E
14、作EMAB于M,四边形ABCD是正方形,AD=BC=CD=AB,EM=AD,BM=CE,ABE的面积为8,ABEM=8,解得:EM=4,即AD=DC=BC=AB=4,CE=3,由勾股定理得:BE=5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理15、y=(x3)2+2【解析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式【详解】解:y=x22x+3=(x1)2+2,其顶点坐标为(1,2)向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x3)2+2,故答案为:y=(x3)2+2.【点睛】此题主要考查了次函数图象与几何变换,
15、要求熟练掌握平移的规律:左加右减,上加下减16、1【解析】试题分析:因为2+24,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1考点:等腰三角形的性质;三角形三边关系三、解答题(共8题,共72分)17、(1)证明见解析;(2)BH125【解析】(1)先判断出AOC=90,再判断出OCBD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论【详解】(1)连接OC,AB是O的直径,点C是AB的中点,AOC90,OAOB,CDAC,OC是ABD是中位线,OCBD,ABDAOC90,ABBD,点B在O上,BD是O
16、的切线;(2)由(1)知,OCBD,OCEBFE,OCBF=OEEB,OB2,OCOB2,AB4,OEEB=23,2BF=23,BF3,在RtABF中,ABF90,根据勾股定理得,AF5,SABF12ABBF12AFBH,ABBFAFBH,435BH,BH125【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键18、(1)证明见解析;(2);(3)证明见解析【解析】(1)根据等边对等角可得OAB=OBA,然后根据OACD得到OAB+AGC=90,从而推出FBG+OBA=90,从而得到OBFB,再根据切线的定义证明即可(2)根据两
17、直线平行,内错角相等可得ACF=F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得DBG=ACF,然后求出DBG=F,从而求出BDG和FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证【详解】解:(1)证明:OA=OB,OAB=OBAOACD,OAB+AGC=90又FGB=FBG,FGB=AGC,FBG+OBA=90,即OBF=90OBFBAB是O的弦,点B在O上BF是O的切线 (2)ACBF,ACF=FCD=a,OACD,CE=CD=atan
18、F=,即解得连接OC,设圆的半径为r,则,在RtOCE中,即,解得(3)证明:连接BD,DBG=ACF,ACF=F(已证),DBG=F又FGB=FGB,BDGFBG,即GB2=DGGFGF2GB2=GF2DGGF=GF(GFDG)=GFDF,即GF2GB2=DFGF19、A、B两种型号的空调购买价分别为2120元、2320元【解析】试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.试题解析:设A、B两种型号的空调购买价分别为x元、y元,依
19、题意得:解得:答:A、B两种型号的空调购买价分别为2120元、2320元20、 (1) 80、72;(2) 16人;(3) 50人【解析】(1) 用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出,即 m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.(2) 根据扇形统计图算出骑自行车的所占百分比, 再用总人数乘以该百分比即可求出骑自行车的人数, 补全条形图即可(3) 依题意设原来开私家车的人中有x人改为骑自行车, 用x分别表示改变出行方式后的骑自行车和开私家车
20、的人数, 根据题意列出一元一次不等式, 解不等式即可【详解】解:(1)样本中的总人数为810%=80人,骑自行车的百分比为1(10%+25%+45%)=20%,扇形统计十图中“骑自行车”所在扇形的圆心角为36020%=72(2)骑自行车的人数为8020%=16人,补全图形如下:(3)设原来开私家车的人中有x人改骑自行车,由题意,得:1000(110%25%45%)+x100025%x,解得:x50,原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数【点睛】本题主要考查统计图表和一元一次不等式的应用。21、(1)250、12;(2)平均数:1.38h;众数:1.
21、5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可【详解】(1)本次接受随机抽样调查的中学生人数为6024%=250人,m=100(24+48+8+8)=12,故答案为250、12
22、;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000=160000人【点睛】本题主要考查数据的收集、 处理以及统计图表.22、(1)(2)证明见解析【解析】(1)根据矩形的性质,通过“角角边”证明三角形全等即可;(2)根据题意和(1)可得AC与EF互相垂直平分,所以四边形AECF是菱形【详解】(1)证明:四边形ABCD是矩形,OB=OD,AECF,E=F(两直线平行,内错角相等),在BOE与DOF中,BOEDOF(AAS)(2)证明:四边形ABCD是矩形,OA=OC,又由(1)BOEDOF得,OE=OF,四边
23、形AECF是平行四边形,又EFAC,四边形AECF是菱形23、解:(1)直线CD和O的位置关系是相切,理由见解析(2)BE=1【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得DAB+DBA=90,再由CDA=CBD可得CDA+ADO=90,从而得CDO=90,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可试题解析:(1)直线CD和O的位置关系是相切,理由是:连接OD,AB是O的直径,ADB=90,DAB+DBA=90,CDA=CBD,DAB+CDA=90,OD=OA,DAB=ADO,CDA+ADO=90,即ODCE,直线CD是O的切线,即直线CD和O的位置关系是相切;(2)AC=2,O的半径是3,OC=2+3=5,OD=3,在RtCDO中,由勾股定理得:CD=4,CE切O于D,EB切O于B,DE=EB,CBE=90,设DE=EB=x,在RtCBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 慢性头痛中医调理方案
- 酒店餐饮食材物流方案
- 水下机器人取水作业方案
- 企业团餐服务协议书
- 煤矿撬装站工程施工组织方案
- 老年人道德关怀活动设计方案
- 危险化学品实验室安全方案
- 南宁2024年04版小学3年级下册英语第六单元测验卷
- 就业合同范本(2篇)
- 如何打造高效的英语听力课堂
- 期中 (试题) -2024-2025学年人教PEP版英语六年级上册
- 大学与文化传承智慧树知到期末考试答案章节答案2024年浙江大学
- 2024春形势与政策课件当前国际形势与中国原则立场
- 2024年舟山继续教育公需课考试题库
- 一年级拼音默写表
- 2024届高考英语阅读理解命题说题课件
- 软件正版化培训课件
- 第二单元 遵守社会规则 复习课件 部编版道德与法治八年级上册
- 《思想道德与法治》 课件 第四章 明确价值要求 践行价值准则
- 蒸汽锅炉安装施工方案
- 三年级数学《四边形的认识》PPT课件
评论
0/150
提交评论