版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1已知ABC中,BAC=90,用尺规过点A作一条直线,使其将ABC分成两个相似的三角形,其作法不正确的是( )ABCD2下列说法正确的是()A3是相反数B3与3互为相反数C3与互为相反数D3与互为相反数3BAC放在正方形网格纸的位置如图,则tanBAC的值为()ABCD4小刚从家去学校,先匀速步行到
2、车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()ABCD5“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A3B4C5D66已知一次函数y(k2)x+k不经过第三象限,则k的取值范围是()Ak2Bk2C0k2D0k27的倒数的绝对值是()ABCD8我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理
3、论上能把的值计算到任意精度祖冲之继承并发展了“割圆术”,将的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()AB2CD9小明解方程的过程如下,他的解答过程中从第()步开始出现错误解:去分母,得1(x2)1去括号,得1x+21合并同类项,得x+31移项,得x2系数化为1,得x2ABCD10如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把ABE沿AE折叠,当点B的对应点B落在ADC的角平分线上时,则点B到BC的距离为( )A1或2B2或3C3或4D4或5二、填空题(本大题共6个小题,每小题3分,共18分
4、)11如图RtABC中,C=90,AC=6,BC=8,D是AB的中点,P是直线BC上一点,把BDP沿PD所在直线翻折后,点B落在点Q处,如果QDBC,那么点P和点B间的距离等于_12将一副直角三角板如图放置,使含30角的三角板的直角边和含45角的三角板一条直角边在同一条直线上,则1的度数为_ 13如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AEEF,CFEF,则正方形ABCD的边长为_14一个n边形的每个内角都为144,则边数n为_15如图,在ABC中,BABC4,A30,D是AC上一动点,AC的长_;BD+DC的最小值是_16如图所示,四边形ABCD中,对角线AC、BD交
5、于点E,且,若,则CE的长为_三、解答题(共8题,共72分)17(8分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生20162017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图请根据图中提供的信息,回答下列问题:a= %,并补全条形图在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?18(8分)如图,在平面直角坐标xOy中,正比例函数ykx的图象与反比例函数y的图象都经过点A(2,2)(1)分别求这两个函数的表达式;(2)将直线
6、OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及ABC的面积19(8分)解不等式组: 2x+15x-7x+1032x .20(8分)如图,AB是O的直径,D、D为O上两点,CFAB于点F,CEAD交AD的延长线于点E,且CE=CF.(1)求证:CE是O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.21(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作MECD于点E,1=1(1)若CE=1,求BC的长;(1)求证:AM=DF+ME22(10分)如图,抛物线y=x11x3与
7、x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的
8、F点坐标;如果不存在,请说明理由23(12分)如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PA、PB、AB、OP,已知PB是O的切线(1)求证:PBA=C;(2)若OPBC,且OP=9,O的半径为3,求BC的长24如图,在ABC中,ABAC,若将ABC绕点C顺时针旋转180得到EFC,连接AF、BE(1)求证:四边形ABEF是平行四边形;(2)当ABC为多少度时,四边形ABEF为矩形?请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边
9、上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角BAC内作作CAD=B,交BC于点D,根据余角的定义及等量代换得出BBAD=90,进而得出ADBC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不
10、符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键2、B【解析】符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确【详
11、解】A、3和-3互为相反数,错误;B、3与-3互为相反数,正确;C、3与互为倒数,错误;D、3与-互为负倒数,错误;故选B【点睛】此题考查相反数问题,正确理解相反数的定义是解答此题的关键3、D【解析】连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明ADC=90,再利用三角函数定义可得答案【详解】连接CD,如图:,CD=,AC=,ADC=90,tanBAC=故选D【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明ADC=904、B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可【详解】小刚从家到学校,先匀速步行到车站
12、,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.5、C【解析】如图所示,(a+b)2=21a2+2ab+b2=21,大正方形的面积为13,2ab=2113=8,小正方形的面积为138=1故选C考点:勾股定理的证明6、D【解析】直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0当经过第一、二、四象限时, ,解得0k2,综上所述,0k2。故选D
13、7、D【解析】直接利用倒数的定义结合绝对值的性质分析得出答案【详解】解:的倒数为,则的绝对值是:.故答案选:D.【点睛】本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.8、C【解析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=611sin60=故选C【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答9、A【解析】根据解分式方程的方法可以判断哪一步是错误的,从而
14、可以解答本题【详解】=1,去分母,得1-(x-2)=x,故错误,故选A【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法10、A【解析】连接BD,过点B作BMAD于M设DM=BM=x,则AM=7-x,根据等腰直角三角形的性质和折叠的性质得到:(7-x)2=25-x2,通过解方程求得x的值,易得点B到BC的距离【详解】解:如图,连接BD,过点B作BMAD于M,点B的对应点B落在ADC的角平分线上,设DM=BM=x,则AM=7x,又由折叠的性质知AB=AB=5,在直角AMB中,由勾股定理得到:,即,解得x=3或x=4,则点B到BC的距离为2或1故选A【点睛】本题考查的是翻折变换的性质
15、,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、2.1或2【解析】在RtACB中,根据勾股定理可求AB的长,根据折叠的性质可得QD=BD,QP=BP,根据三角形中位线定理可得DE=AC,BD=AB,BE=BC,再在RtQEP中,根据勾股定理可求QP,继而可求得答案【详解】如图所示:在RtACB中,C=90,AC=6,BC=8,AB=2,由折叠的性质可得QD=BD,QP=BP,又QDBC,DQAC,D是AB的中点,DE=AC=3,BD=AB=1,BE=BC=4,当点P在DE
16、右侧时,QE=1-3=2,在RtQEP中,QP2=(4-BP)2+QE2,即QP2=(4-QP)2+22,解得QP=2.1,则BP=2.1当点P在DE左侧时,同知,BP=2故答案为:2.1或2【点睛】考查了折叠的性质、直角三角形的性质以及勾股定理此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系12、75【解析】先根据同旁内角互补,两直线平行得出ACDF,再根据两直线平行内错角相等得出2=A=45,然后根据三角形内角与外角的关系可得1的度数【详解】ACB=DFE=90,ACB+DFE=180,ACDF,2=A=45,1=2+D=45+30=75故答案为:75【点睛】本题考查了平行线的判
17、定与性质,三角形外角的性质,求出2=A=45是解题的关键13、 【解析】分析:连接AC,交EF于点M,可证明AEMCMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB详解:连接AC,交EF于点M,AE丄EF,EF丄FC,E=F=90,AME=CMF, AEMCFM,AE=1,EF=FC=3,EM=,FM=,在RtAEM中,AM2=AE2+EM2=1+=,解得AM=,在RtFCM中,CM2=CF2+FM2=9+=,解得CM=,AC=AM+CM=5,在RtABC中,AB=BC,AB2+BC2=AC2=25,AB=,即正方形的边长为故答案为:点睛:本题主要考查相似三角形的判定和性质
18、及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用14、10【解析】解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36,因为多边形的外角和是360,所以这个多边形的边数等于36036=10,故答案为:1015、()AC4 ()4,2. 【解析】()如图,过B作BEAC于E,根据等腰三角形的性质和解直角三角形即可得到结论;()如图,作BC的垂直平分线交AC于D,则BDCD,此时BD+DC的值最小,解直角三角形即可得到结论【详解】解:()如图,过B作BEAC于E,BABC4,AE
19、CE,A30,AEAB2,AC2AE4;()如图,作BC的垂直平分线交AC于D,则BDCD,此时BD+DC的值最小,BFCF2,BDCD ,BD+DC的最小值2,故答案为:4,2【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键16、【解析】此题有等腰三角形,所以可作BHCD,交EC于点G,利用三线合一性质及邻补角互补可得BGD=120,根据四边形内角和360,得到ABG+ADG=180此时再延长GB至K,使AK=AG,构造出等边AGK易证ABKADG,从而说明ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在
20、RtDBH中利用勾股定理及三角函数知识得到EBG的正切值,然后作EFBG,求出EF,在RtEFG中解出EG长度,最后CE=CG+GE求解【详解】如图,作于H,交AC于点G,连接DG,BH垂直平分CD,延长GB至K,连接AK使,则是等边三角形,又,(),是等边三角形,设,则,在中,解得,当时,所以,作,设,则,故答案为【点睛】本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键三、解答题(共8题,共72分)17、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人【解析】(1
21、)用1减去其他天数所占的百分比即可得到a的值,用310乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案【详解】解:(1)扇形统计图中a=15%40%20%25%=10%,该扇形所对圆心角的度数为31010%=31,参加社会实践活动的天数为8天的人数是:10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1(3)根据题意得:9000(25
22、%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小18、(1)反比例函数表达式为,正比例函数表达式为;(2),.【解析】试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将ABC的面积转化为OBC的面积试题解析:()把代入反比例函数表达式,得,解
23、得,反比例函数表达式为,把代入正比例函数,得,解得,正比例函数表达式为()直线由直线向上平移个单位所得,直线的表达式为,由,解得或,在第四象限,连接,19、x5x-7x+1032x,由得:x3,由得:x2,不等式组的解集为:x2.20、(1)证明见解析;(2)334a2【解析】(1)连接OC,AC,可先证明AC平分BAE,结合圆的性质可证明OCAE,可得OCB90,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案【详解】(1)证明:连接OC,ACCFAB,CEAD,且CECFCAECABOCOA,CABOCACAEO
24、CAOCAEOCEAEC180,AEC90,OCE90即OCCE,OC是O的半径,点C为半径外端,CE是O的切线(2)解:ADCD,DACDCACAB,DCAB,CAEOCA,OCAD,四边形AOCD是平行四边形,OCADa,AB2a,CAECAB,CDCBa,CBOCOB,OCB是等边三角形,在RtCFB中,CFCB2-FB2=a23 ,S四边形ABCD12 (DCAB)CF334a2【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径21、 (1)1;(1)见解析.【解析】试题分析
25、:(1)根据菱形的对边平行可得ABCD,再根据两直线平行,内错角相等可得1=ACD,所以ACD=1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(1)先利用“边角边”证明CEM和CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明1=G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明CDF和BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证试题解析:(1)四边形ABCD是菱形,ABCD,1=ACD,1=1,ACD=1,MC=MD,ME
26、CD,CD=1CE,CE=1,CD=1,BC=CD=1;(1)AM=DF+ME证明:如图,F为边BC的中点, BF=CF=BC,CF=CE,在菱形ABCD中,AC平分BCD,ACB=ACD,在CEM和CFM中,CEMCFM(SAS),ME=MF,延长AB交DF的延长线于点G,ABCD,G=1,1=1,1=G,AM=MG,在CDF和BGF中,CDFBGF(AAS),GF=DF,由图形可知,GM=GF+MF,AM=DF+ME22、(1)y=x1;(1)ACE的面积最大值为;(3)M(1,1),N(,0);(4)满足条件的F点坐标为F1(1,0),F1(3,0),F3(4+,0),F4(4,0)【解
27、析】(1)令抛物线y=x1-1x-3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;(1)设P点的横坐标为x(-1x1),求出P、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出ACE的面积最大值;(3)根据D点关于PE的对称点为点C(1,-3),点Q(0,-1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=-1x+1,进而求出最小值和点M,N的坐标;(4)结合图形,分两类进行讨论,CF平行x轴,如图1,此时可以求出F点两个坐标;CF不平行x轴,如题中的图1,此时可以求出F点的两个坐标【详解】解:(1)令y=0,解得或x1=3,A(1,0),B(3,0);将C点的横坐标x=1代入y=x11x3得 C(1,-3),直线AC的函数解析式是 (1)设P点的横坐标为x(1x1),则P、E的坐标分别为:P(x,x1),E(x,x11x3),P点在E点的上方, 当时,PE的最大值ACE的面积最大值 (3)D点关于PE的对称点为点C(1,3),点Q(0,1)点关于x轴的对称点为K(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业主和房东简单合同范本
- 基于物联网的二零二四年度智能农业解决方案购销合同
- 2024版房地产经纪咨询费合同
- 2024年度福州市二手房买卖合同全文3篇
- 2024年度工程市场调研居间合同3篇
- 麻醉相关课件
- 工程总承包中的联合体协议
- 个人投资简单的协议书范本
- 2024年度云计算服务合同:企业客户与云服务提供商的长期合作协议
- 2024年度租赁合同:办公场所租赁服务3篇
- 服务器基础知识单选题100道及答案解析
- 2020年EHS体系管理评审汇报
- 孔板流量计完整版本
- 中小学校园食品安全主题班会食刻牢记安全相伴课件
- 2024-2030年中国媒体行业市场发展分析及发展趋势与投资机会研究报告
- 2024年高中学业水平考核美术试题
- 《互联网广告可识别性执法指南》解读与实操
- 中国法制史重点知识
- 血液透析中针头脱出致血液外渗护理不良事件案例分析
- 《马克思主义发展史》题集
- 新《烟草专卖法》应知应会考试题库400题(含答案)
评论
0/150
提交评论