2022年江苏省扬州市名校中考一模数学试题含解析及点睛_第1页
2022年江苏省扬州市名校中考一模数学试题含解析及点睛_第2页
2022年江苏省扬州市名校中考一模数学试题含解析及点睛_第3页
2022年江苏省扬州市名校中考一模数学试题含解析及点睛_第4页
2022年江苏省扬州市名校中考一模数学试题含解析及点睛_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1若xy,则下列式子错误的是( )Ax3y3B3x3yCx+3y+3D2如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()ABCD3如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”下列各

2、组数据中,能作为一个智慧三角形三边长的一组是()A1,2,3B1,1,C1,1,D1,2,4方程x(x2)x20的两个根为( )A,B,C ,D, 5魏晋时期的数学家刘徽首创割圆术为计算圆周率建立了严密的理论和完善的算法作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A0.5B1C3D6一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,

3、4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )ABCD7一元二次方程(x+3)(x-7)=0的两个根是Ax1=3,x2=-7 Bx1=3,x2=7Cx1=-3,x2=7 Dx1=-3,x2=-78如图,在55的方格纸中将图中的图形N平移到如图所示的位置,那么下列平移正确的是( )A先向下移动1格,再向左移动1格B先向下移动1格,再向左移动2格C先向下移动2格,再向左移动1格D先向下移动2格,再向左移动2格9如图,已知垂直于的平分线于点,交于点, ,若的面积为1,则的面积是( )ABCD10已知:如图,在扇形中,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧

4、的长为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11分解因式:_12已知点(1,m)、(2,n )在二次函数yax22ax1的图象上,如果mn,那么a_0(用“”或“”连接)13如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得DCB=ACO,则D点坐标为_. 14ABC中,A、B都是锐角,若sinA,cosB,则C_15已知a,b为两个连续的整数,且ab,则ba_16若一次函数y=2(x+1)+4的值是正数,则x的取值范围是_三、解答题(共8题,共72分)17(8分)已知关于x的一元二次方程3x26x+1k=0有实数根,k为负整数求k的值;如果

5、这个方程有两个整数根,求出它的根18(8分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为 ,图中的a的值为 ;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数19(8分)如图,抛物线y=ax2+bx+c与x轴相交于点A(3,0),B(1,0),与y轴相交于(0,),顶点为P(1)求抛物线解析式;(2)在抛物线是否存在点E,使ABP的面积等于ABE的面积?若存在,求出符合条件的点E的坐

6、标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积20(8分)如图,在梯形ABCD中,ADBC,对角线 AC、BD交于点 M,点E在边BC上,且DAE=DCB,联结AE,AE与BD交于点F(1)求证:;(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.21(8分)如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转(090)得到矩形AEFG延长CB与EF交于点H (1)求证:BH=EH;(2)如图2,当点G落在线段BC上时,求点B经过的路径长2

7、2(10分)如图,ABC中,ACB=90,以BC为直径的O交AB于点D,过点D作O的切线交CB的延长线于点E,交AC于点F(1)求证:点F是AC的中点;(2)若A=30,AF=,求图中阴影部分的面积23(12分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担李明按照相关政策投资销售本市生产的一种新型节能灯已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获

8、得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?24重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【

9、解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确故选B2、D【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率详解:共6个数,大于3的有3个,P(大于3)=.故选D点睛:本题考查概率的求法:如果一个事件有n种可能

10、,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=3、D【解析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120,底角30的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,依此即可作出判定【详解】1+2=3,不能构成三角形,故选项错误;B、12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120,底角30的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90,60,30的直角三

11、角形,其中9030=3,符合“智慧三角形”的定义,故选项正确故选D4、C【解析】根据因式分解法,可得答案【详解】解:因式分解,得(x-2)(x+1)=0,于是,得x-2=0或x+1=0,解得x1=-1,x2=2,故选:C【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键5、C【解析】连接OC、OD,根据正六边形的性质得到COD60,得到COD是等边三角形,得到OCCD,根据题意计算即可【详解】连接OC、OD,六边形ABCDEF是正六边形,COD60,又OCOD,COD是等边三角形,OCCD,正六边形的周长:圆的直径6CD:2CD3,故选:C【点睛】本题考查的是正多边形和圆,掌握正多

12、边形的中心角的计算公式是解题的关键6、B【解析】袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.7、C【解析】根据因式分解法直接求解即可得【详解】(x+3)(x7)=0,x+3=0或x7=0,x1=3,x2=7,故选C【点睛】本题考查了解一元二次方程因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.8、C【解析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在55方格纸中将图中的图形N平移后的位置如图所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C【点睛】本题考查平移的基本概念及平移规律,是比较简单的几

13、何图形变换.关键是要观察比较平移前后物体的位置.9、B【解析】先证明ABDEBD,从而可得AD=DE,然后先求得AEC的面积,继而可得到CDE的面积.【详解】BD平分ABC,ABD=EBD,AEBD,ADB=EDB=90,又BD=BD,ABDEBD,AD=ED,的面积为1,SAEC=SABC=,又AD=ED,SCDE= SAEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.10、D【解析】如图,连接OD根据折叠的性质、圆的性质推知ODB是等边三角形,则易求AOD=110-DOB=50;然后由弧长公式弧长的公式 来求 的长【详解】解:

14、如图,连接OD解:如图,连接OD根据折叠的性质知,OB=DB又OD=OB,OD=OB=DB,即ODB是等边三角形,DOB=60AOB=110,AOD=AOB-DOB=50,的长为 =5故选D【点睛】本题考查了弧长的计算,翻折变换(折叠问题)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等所以由折叠的性质推知ODB是等边三角形是解答此题的关键之处二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】=2()=.故答案为.12、;【解析】=a(x-1)2-a-1,抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m)、(2,n)在二次函数的

15、图像上,|11|21|,且mn, a0.故答案为13、(,),(-4,-5)【解析】求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于DCB=ACO所以tanDCB=tanACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时的坐标【详解】令y=0代入y=-x2-2x+3,x=-3或x=1,OA=1,OB=3,令x=0代入y=-x2-2x+3,y=3,OC=3,当点D在x轴下方时,设直线CD与x轴交于点E,过点E作EGCB于点G,OB=OC,CBO=45,BG=EG,OB=OC=3,由勾股定理可知:BC=3,设EG

16、=x,CG=3-x,DCB=ACOtanDCB=tanACO=,x=,BE=x=,OE=OB-BE=,E(-,0),设CE的解析式为y=mx+n,交抛物线于点D2,把C(0,3)和E(-,0)代入y=mx+n,,解得:.直线CE的解析式为:y=2x+3,联立 解得:x=-4或x=0,D2的坐标为(-4,-5)设点E关于BC的对称点为F,连接FB,FBC=45,FBOB,FB=BE=,F(-3,)设CF的解析式为y=ax+b,把C(0,3)和(-3,)代入y=ax+b 解得:,直线CF的解析式为:y=x+3,联立 解得:x=0或x=-D1的坐标为(-,)故答案为(-,)或(-4,-5)【点睛】本

17、题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标14、60【解析】先根据特殊角的三角函数值求出A、B的度数,再根据三角形内角和定理求出C即可作出判断【详解】ABC中,A、B都是锐角sinA=,cosB=,A=B=60C=180-A-B=180-60-60=60故答案为60【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单15、1【解析】根据已知ab,结合a、b是两个连续的整数可得a、b的值,即可求解.【详解】解:a,b为两个连续的整数,且ab,a2,b3,ba321故答案为1【点睛】此题考查的是如何根据无理数的

18、范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,16、x1【解析】根据一次函数的性质得出不等式解答即可【详解】因为一次函数y=2(x+1)+4的值是正数,可得:2(x+1)+40,解得:x1,故答案为x1.【点睛】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.三、解答题(共8题,共72分)17、(2)k=2,2(2)方程的根为x2=x2=2【解析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题

19、意的k的值【详解】解:(2)根据题意,得=(6)243(2k)0,解得 k2k为负整数,k=2,2(2)当k=2时,不符合题意,舍去; 当k=2时,符合题意,此时方程的根为x2=x2=2【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:(2)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根也考查了一元二次方程的解法18、(1)50、2;(2)平均数是7.11;众数是1;中位数是1【解析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定

20、义计算可得【详解】(1)本次抽查测试的学生人数为1421%=50人,a%=100%=2%,即a=2故答案为50、2;(2)观察条形统计图,平均数为=7.11在这组数据中,1出现了20次,出现的次数最多,这组数据的众数是1将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,=1,这组数据的中位数是1【点睛】本题考查了众数、平均数和中位数的定义用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数平均数是指在一

21、组数据中所有数据之和再除以数据的个数19、(1)y=x2+x(2)存在,(12,2)或(1+2,2)(3)点F的坐标为(1,2)、(3,2)、(5,2),且平行四边形的面积为 1【解析】(1)设抛物线解析式为y=ax2+bx+c,把(3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;【详解】(1)设抛物线解析式为y=ax2+bx+c,将(3,0),(1,0),(0,)

22、代入抛物线解析式得,解得:a=,b=1,c=抛物线解析式:y=x2+x(2)存在y=x2+x=(x+1)22P点坐标为(1,2)ABP的面积等于ABE的面积,点E到AB的距离等于2,设E(a,2),a2+a=2解得a1=12,a2=1+2符合条件的点E的坐标为(12,2)或(1+2,2)(3)点A(3,0),点B(1,0),AB=4若AB为边,且以A、B、P、F为顶点的四边形为平行四边形ABPF,AB=PF=4点P坐标(1,2)点F坐标为(3,2),(5,2)平行四边形的面积=42=1若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形AB与PF互相平分设点F(x,y)且点A(3,0),

23、点B(1,0),点P(1,2) ,x=1,y=2点F(1,2)平行四边形的面积=44=1综上所述:点F的坐标为(1,2)、(3,2)、(5,2),且平行四边形的面积为1【点睛】本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.20、(1) 证明见解析;(2) 证明见解析.【解析】分析:(1)由ADBC可得出DAE=AEB,结合DCB=DAE可得出DCB=AEB,进而可得出AEDC、AMFCMD,根据相似三角形的性质可得出=,根据ADBC,可得出AMDCMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MFMB; (2)设FM=

24、a,则BF=3a,BM=4a由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由ADBC,可得出AFDEFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形详解:(1)ADBC,DAE=AEBDCB=DAE,DCB=AEB,AEDC,AMFCMD,= ADBC,AMDCMB,=,即MD2=MFMB (2)设FM=a,则BF=3a,BM=4a 由MD2=MFMB,得:MD2=a4a,MD=2a,DF=BF=3a ADBC,AFDEFB,=1,AF=EF,四边形ABED是平行四边形 点睛:本题考查了相似三角形的

25、判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”21、(1)见解析;(2)B点经过的路径长为【解析】(1)、连接AH,根据旋转图形的性质得出AB=AE,ABH=AEH=90,根据AH为公共边得出RtABH和RtAEH全等,从而得出答案;(2)、根据题意得出EAB的度数,然后根据弧长的计算公式得出答案【详解】(1)、证明:如图1中,连接AH,由旋转可得AB=AE,ABH=AEH=90,又AH=AH,RtABHRtAEH,BH=EH(2)、解:由旋转可得AG=AD=4,AE=AB,EAG=BAC

26、=90,在RtABG中,AG=4,AB=2,cosBAG=,BAG=30,EAB=60 ,弧BE的长为=,即B点经过的路径长为【点睛】本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型明白旋转图形的性质是解决这个问题的关键22、(1)见解析;(2) 【解析】(1)连接OD、CD,如图,利用圆周角定理得到BDC=90,再判定AC为O的切线,则根据切线长定理得到FD=FC,然后证明3=A得到FD=FA,从而有FC=FA;(2)在RtACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明OBD为等边三角形得到BOD=60,接着根据切线的性质得到ODEF,从而可计算

27、出DE的长,然后根据扇形的面积公式,利用S阴影部分=SODE-S扇形BOD进行计算即可【详解】(1)证明:连接OD、CD,如图,BC为直径,BDC=90,ACB=90,AC为O的切线,EF为O的切线,FD=FC,1=2,1+A=90,2+3=90,3=A,FD=FA,FC=FA,点F是AC中点;(2)解:在RtACB中,AC=2AF=2,而A=30,CBA=60,BC=AC=2,OB=OD,OBD为等边三角形,BOD=60,EF为切线,ODEF,在RtODE中,DE=OD=,S阴影部分=SODES扇形BOD=1=【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式23、(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论