版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、习题课函数单调性与奇偶性的综合应用函 数第1页,共20页。第2页,共20页。知识点、函数的单调性与奇偶性 1.填空.(1)函数的奇偶性是函数定义域上的概念,而函数的单调性是区间上的概念,因此在判定函数的单调性的时候,一定要指出函数的单调区间.(2)在定义域关于原点对称的前提下,f(x)=x2n-1(nZ)型函数都是奇函数;f(x)=x2n(nZ)型函数及常数函数都是偶函数.(3)设f(x),g(x)的定义域分别是D1,D2,则它们在公共定义域上,满足奇+奇=奇,偶+偶=偶,奇奇=偶,奇偶=奇,偶偶=偶.第3页,共20页。(4)若f(x)为奇函数,且在区间a,b(ab)上是增(减)函数,则f(x
2、)在区间-b,-a上是增(减)函数;若f(x)为偶函数,且在区间a,b(ab)上是增(减)函数,则f(x)在区间-b,-a上是减(增)函数,即奇函数在关于原点对称的两个区间上的单调性相同;而偶函数在关于原点对称的两个区间上的单调性相反.(5)若f(x)为奇函数,且在x=0处有定义,则f(0)=0;若f(x)为偶函数,则f(x)=f(-x)=f(|x|).第4页,共20页。2.做一做(1)若函数f(x)=(m-2)x2+(m-1)x+2是偶函数,则f(x)()A.在1,7上是增函数B.在-7,2上是增函数C.在-5,-3上是增函数D.在-3,3上是增函数(2)若奇函数f(x)满足f(3)f(1)
3、,则下列各式中一定成立的是()A.f(-1)f(1)C.f(-2)f(3)D.f(-3)f(5)(3)定义在R上的偶函数f(x),对任意x1,x20,+)(x1x2),都有 0,则f(3),f(-2),f(1)按从小到大的顺序排列为 .第5页,共20页。解析:(1)因为函数f(x)=(m-2)x2+(m-1)x+2是偶函数,所以m=1.所以f(x)=-x2+2,结合函数f(x)可知选C.(2)因为f(x)是奇函数,所以f(3)=-f(-3),f(1)=-f(-1).又f(3)f(1),所以-f(-3)f(-1).(3)由已知条件可知f(x)在0,+)内单调递减,f(3)f(2)f(1).再由偶
4、函数性质得f(3)f(-2)f(1).答案:(1)C(2)A(3)f(3)f(-2)0时,f(x)=-2x2+3x+1,求:(1)f(0);(2)当x0时,f(x)的解析式;(3)f(x)在R上的解析式.分析:(1)利用奇函数的定义求f(0);第7页,共20页。探究一探究二思想方法解:(1)因为函数f(x)是定义在R上的奇函数,所以f(-0)=-f(0),即f(0)=0.(2)当x0,f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.由于f(x)是奇函数,故f(x)=-f(-x),所以f(x)=2x2+3x-1,x0.(3)函数f(x)在R上的解析式为反思感悟利用函数奇偶性求解析
5、式的注意事项1.在哪个区间求解析式,就把“x”设在哪个区间;2.利用已知区间的解析式进行代入;3.利用f(x)的奇偶性把f(-x)写成-f(x)或f(x),从而解出f(x);4.定义域为R的奇函数满足f(0)=0.第8页,共20页。探究一探究二思想方法变式训练1本例中若把“奇函数”换成“偶函数”,求x0时f(x)的解析式.解:设x0,f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.f(x)是偶函数,f(-x)=f(x).f(x)=-2x2-3x+1,xf(-3)f(-2)B.f()f(-2)f(-3)C.f()f(-3)f(-2)D.f()f(-2)f(-3)解析:f(x)在R
6、上是偶函数,f(-2)=f(2),f(-3)=f(3).而23,且f(x)在0,+)内为增函数,f(2)f(3)f().f(-2)f(-3)f(3)f().又f(x)是R上的偶函数,故f(-2)=f(2),f(-3)=f(3),从而有f(-2)f(-3)f().第12页,共20页。探究一探究二思想方法化归思想在解抽象不等式中的应用典例 已知函数f(x)的定义域为(-1,1),且满足下列条件:f(x)为奇函数;f(x)在定义域上单调递减;f(1-a)+f(1-a2)0,求实数a的取值范围.思路点拨:要由不等式f(1-a)+f(1-a2)0求实数a的取值范围,应利用函数f(x)的奇偶性与单调性去掉
7、“f”,建立关于a的不等式组求解.解:f(x)是奇函数,f(1-a2)=-f(a2-1).f(1-a)+f(1-a2)0f(1-a)-f(1-a2)f(1-a)f(a2-1).f(x)在定义域(-1,1)内是单调递减的,a的取值范围为(0,1). 第13页,共20页。探究一探究二思想方法方法点睛1.本题的解答充分体现了化归思想的作用,将抽象不等式借助函数的性质转化成为具体不等式,问题从而解决.2.当然本题中还要注意以下化归与计算等细节易错问题:(1)由函数f(x)为奇函数,将不等式f(1-a)+f(1-a2)0等价变形时出错;(2)利用函数f(x)单调递减去掉“f”,建立关于a的不等式组时,因
8、忽略函数f(x)的定义域出错;(3)解错不等式(组)或表示a的取值范围出错.第14页,共20页。探究一探究二思想方法变式训练设函数f(x)是定义在R上的奇函数,且在区间(-,0)内是减函数,实数a满足不等式f(3a2+a-3)f(3a2-2a),求实数a的取值范围.解:f(x)在区间(-,0)内是减函数,f(x)的图像在y轴左侧递减.又f(x)是奇函数,f(x)的图像关于原点中心对称,则在y轴右侧同样递减.又f(-0)=-f(0),解得f(0)=0,f(x)的图像在R上递减.f(3a2+a-3)3a2-2a,解得a1,即实数a的取值范围为(1,+).第15页,共20页。1.设f(x)是定义在-
9、6,6上的偶函数,且f(4)f(1),则下列各式一定成立的是()A.f(0)f(3)C.f(2)f(0)D.f(-1)f(1),f(4)f(-1).答案:D第16页,共20页。2.已知x0时,f(x)=x-2 019,且知f(x)在定义域R上是奇函数,则当x0时,f(x)的解析式是()A.f(x)=x+2 019B.f(x)=-x+2 019C.f(x)=-x-2 019D.f(x)=x-2 019解析:设x0,所以f(-x)=-x-2 019.又因为f(x)是奇函数,所以f(x)=-f(-x)=x+2 019.故选A.答案:A第17页,共20页。3.已知f(x)=x5+ax3+bx-8,且f
10、(-2)=10,那么f(2)= .解析:f(-2)=(-2)5+a(-2)3+b(-2)-8=10,25+a23+2b=-18.f(2)=25+a23+2b-8=-26.答案:-26第18页,共20页。5.已知奇函数f(x)在R上是减函数,且f(3a-10)+f(4-2a)0,求a的取值范围.解:f(3a-10)+f(4-2a)0,f(3a-10)-f(4-2a).f(x)为奇函数,-f(4-2a)=f(2a-4).f(3a-10)2a-4.a6,即a的取值范围为(6,+). 第19页,共20页。1、只要有坚强的意志力,就自然而然地会有能耐、机灵和知识。2、你们应该培养对自己,对自己的力量的信
11、心,百这种信心是靠克服障碍,培养意志和锻炼意志而获得的。3、坚强的信念能赢得强者的心,并使他们变得更坚强。4、天行健,君子以自强不息。5、有百折不挠的信念的所支持的人的意志,比那些似乎是无敌的物质力量有更强大的威力。6、永远没有人力可以击退一个坚决强毅的希望。7、意大利有一句谚语:对一个歌手的要求,首先是嗓子、嗓子和嗓子我现在按照这一公式拙劣地摹仿为:对一个要成为不负于高尔基所声称的那种“人”的要求,首先是意志、意志和意志。8、执着追求并从中得到最大快乐的人,才是成功者。9、三军可夺帅也,匹夫不可夺志也。10、发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自
12、己发现的意志,并把研究继续下去。11、我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。12、公共的利益,人类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。13、立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。14、意志的出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识水平上。15、无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。16、即使遇到了不幸的灾难,已经开始了的事情决不放弃。17、最可怕的敌人,就是没有坚
13、强的信念。18、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。19、意志若是屈从,不论程度如何,它都帮助了暴力。20、有了坚定的意志,就等于给双脚添了一对翅膀。21、意志坚强,就会战胜恶运。22、只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。23、卓越的人的一大优点是:在不利和艰难的遭遇里百折不挠。24、疼痛的强度,同自然赋于人类的意志和刚度成正比。25、能够岿然不动,坚持正见,度过难关的人是不多的。26、钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。27、只要持续地努
14、力,不懈地奋斗,就没有征服不了的东西。28、立志不坚,终不济事。29、功崇惟志,业广惟勤。30、一个崇高的目标,只要不渝地追求,就会居为壮举;在它纯洁的目光里,一切美德必将胜利。31、书不记,熟读可记;义不精,细思可精;惟有志不立,直是无着力处。32、您得相信,有志者事竟成。古人告诫说:“天国是努力进入的”。只有当勉为其难地一步步向它走去的时候,才必须勉为其难地一步步走下去,才必须勉为其难地去达到它。33、告诉你使我达到目标的奥秘吧,我唯一的力量就是我的坚持精神。34、成大事不在于力量的大小,而在于能坚持多久。35、一个人所能做的就是做出好榜样,要有勇气在风言风语的社会中坚定地高举伦理的信念。
15、36、即使在把眼睛盯着大地的时候,那超群的目光仍然保持着凝视太阳的能力。37、你既然期望辉煌伟大的一生,那么就应该从今天起,以毫不动摇的决心和坚定不移的信念,凭自己的智慧和毅力,去创造你和人类的快乐。38、一个有决心的人,将会找到他的道路。39、在希望与失望的决斗中,如果你用勇气与坚决的双手紧握着,胜利必属于希望。40、富贵不能淫,贫贱不能移,威武不能屈。41、生活的道路一旦选定,就要勇敢地走到底,决不回头。42、生命里最重要的事情是要有个远大的目标,并借助才能与坚持来完成它。43、事业常成于坚忍,毁于急躁。我在沙漠中曾亲眼看见,匆忙的旅人落在从容的后边;疾驰的骏马落在后头,缓步的骆驼继续向前
16、。44、有志者事竟成。45、穷且益坚,不坠青云之志。46、意志目标不在自然中存在,而在生命中蕴藏。47、坚持意志伟大的事业需要始终不渝的精神。48、思想的形成,首先是意志的形成。49、谁有历经千辛万苦的意志,谁就能达到任何目的。50、不作什么决定的意志不是现实的意志;无性格的人从来不做出决定。我终生的等待,换不来你刹那的凝眸。最美的不是下雨天,是曾与你躲过雨的屋檐。征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。生活真象这杯浓酒,不经三番五次的提炼呵,就不会这样可口!人格的完善是本,财富的确立是末能力可以慢慢
17、锻炼,经验可以慢慢积累,热情不可以没有。不管什么东西,总是觉得,别人的比自己的好!只有经历过地狱般的折磨,才有征服天堂的力量。只有流过血的手指才能弹出世间的绝唱。对时间的价值没有没有深切认识的人,决不会坚韧勤勉。第一个青春是上帝给的;第二个的青春是靠自己努力的。不要因为寂寞而恋爱,孤独是为了幸福而等待。每天清晨,当我睁开眼睛,我告诉自己:我今天快乐或是不快乐,并非由我所遭遇的事情造成的,而应该取决于我自己。我可以自己选择事情的发展方向。昨日已逝,明朝未及,我只有过好每一个今天,唯一的今天。昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到
18、许多)。但是我发现有的人过分地瞻前顾后了。为何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级下英语教师工作计划范文
- 科研能力提升计划
- 二年级地方教学计划
- 护理协会年度工作计划范文
- 2025年电大工作计划范文
- 《氨吸收式制冷机》课件
- 政史地科组计划
- 大班安全个人工作计划024开头
- 《氧化还原平衡修改》课件
- 《复试记账》课件2
- 德语四级真题2023
- 入世后黑色家电的产业分析与企业对策
- 2023年社保基金安全警示教育学习研讨会发言稿报告(4篇)
- 6 电气安全与静电防护技术
- GB/T 4087-2009数据的统计处理和解释二项分布可靠度单侧置信下限
- GB/T 35679-2017固体材料微波频段使用波导装置的电磁参数测量方法
- 安全用电课件【知识精讲+高效备课】 人教版九年级 物理教材精研课件
- 华中师范大学文学院《826语言文学综合考试》考试大纲
- 国开电大《个人理财》形考任务1-3试题及答案
- 未成年人需办银行卡证明(模板)
- 高边坡脚手架施工方案(修)
评论
0/150
提交评论