2022年强化训练冀教版七年级数学下册第十一章-因式分解必考点解析试题(无超纲)_第1页
2022年强化训练冀教版七年级数学下册第十一章-因式分解必考点解析试题(无超纲)_第2页
2022年强化训练冀教版七年级数学下册第十一章-因式分解必考点解析试题(无超纲)_第3页
2022年强化训练冀教版七年级数学下册第十一章-因式分解必考点解析试题(无超纲)_第4页
2022年强化训练冀教版七年级数学下册第十一章-因式分解必考点解析试题(无超纲)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、冀教版七年级数学下册第十一章 因式分解必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式能用完全平方公式进行分解因式的是( )Ax2+1Bx2+2x1Cx2+3x+9D2、把多项式x32x

2、2+x分解因式结果正确的是( )Ax(x22x)Bx2(x2)Cx(x+1)(x1)Dx(x1)23、下列各式中,从左到右的变形是因式分解的是( )ABCD4、下列运算错误的是( )ABCD(a0)5、下列各式中,能用平方差公式分解因式的是()Aa2b2Ba2+b2Ca2+(b)2Da3ab36、下列因式分解正确的是( )ABCD7、下列各式从左到右进行因式分解正确的是()A4a24a+14a(a1)+1Bx22x+1(x1)2Cx2+y2(x+y)2Dx24y(x+4y)(x4y)8、把多项式分解因式,其结果是( )ABCD9、已知关于x的二次三项式分解因式的结果是,则代数式的值为( )A3

3、B1CD10、下列等式中,从左到右是因式分解的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式_2、多项式a34a可因式分解为_3、分解因式:_4、计算:_,_,_分解因式:_,_,_5、分解因式:2x3x2_三、解答题(5小题,每小题10分,共计50分)1、(1)整式乘法:(2a2b)3; (2)分解因式:x3-2x2+x2、分解因式:(1);(2);(3)计算:;(4)3、(1)计算:2; (2)因式分解:31212x4、将下列多项式分解因式:(1)(2)5、因式分解:(1)(2)-参考答案-一、单选题1、D【解析】【分析】根据完全平方公式的

4、特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解【详解】解:A、x2+1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;B、x2+2x1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;C、x2+3x+9不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;D、,故选项正确;故选:D【点睛】本题考查了完全平方式的运用分解因式,关键是熟练掌握完全平方式的特点2、D【解析】【分析】先提取公因式,再按照完全平方公式分解即可得到答案.【详解】解:x32x2+x 故选D【点睛】本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方

5、公式分解因式”是解本题的关键.3、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.4、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断【

6、详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a0),故该选项正确,不符合题意,故选A【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键5、B【解析】【分析】能用平方差公式分解因式的式子必须是两项是平方项,符号为异号【详解】解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;B、,能用平方差公式分解因式,故此选项正确;C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;D提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误故选B【点睛

7、】本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键6、D【解析】【分析】各项分解得到结果,即可作出判断【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键7、B【解析】【分析】因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可【详解】解:A. 4a24a+1,故该选项不符合题意;B. x22x+1(x1)2,故该选项符合题意;C. x2+y2(x+y

8、)2,故该选项不符合题意;D. x24y(x+4y)(x4y),故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键8、B【解析】【分析】因为6954,693,所以利用十字相乘法分解因式即可【详解】解:x2+3x54(x6)(x9);故选:B【点睛】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程9、C【解析】【分析】根据因式分解与整式乘法的关系,可求得a与b的值,从而可求得结果的值【详解】则,故选:C【点睛】本题考查了因式分解与整式乘法的关系,负整数指数幂的意义,掌握因式分解与

9、整式乘法的关系是本题的关键10、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键二、填空题1、【解析】【分析】原式提取m后,利用完全平方公式分解即可【详解】解:故答案为:【点睛】本题考查了因式分解,掌握提公因式法因式分解和公式法因式分解是解题的关键2、【解析】【分析】利

10、用提公因式法、公式法进行因式分解即可【详解】解:原式=,故答案为:【点睛】本题考查提公因式法、公式法分解因式,掌握公式的结构特征是正确应用的前提3、【解析】【分析】首先提公因式3x,然后利用完全平方公式因式分解即可分解【详解】解:故答案为:【点睛】本题考查了提公因式法与公式法分解因式,掌握因式分解的方法与步骤,熟记公式是解题关键4、 【解析】【分析】根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可【详解】解:计算:,分解因式:,故答案为:;【点睛】本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上

11、运算法则和因式分解的方法是解题的关键5、x2(2x1)【解析】【分析】根据提公因式法分解【详解】解:2x3x2x2(2x1),故答案为:x2(2x1)【点睛】此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式、十字相乘)是解题的关键三、解答题1、(1)8a6b3;(2)x(x-1)2【解析】【分析】(1)根据整式的运算法则即可求出答案;(2)先提公因式,再利用完全平方公式分解因式即可【详解】解:(1)原式=;(2)原式=【点睛】本题考查了整式的混合运算及因式分解,解题的关键是熟练运用整式的运算法则及完全平方公式分解因式,本题属于基础题型2、(1);(2);

12、(3)85;(4)【解析】【分析】(1)综合利用提公因式法和公式法进行因式分解即可得;(2)利用分组分解法进行因式分解即可得;(3)先利用公式法分解和,从而可得的值,再代入计算即可得;(4)先利用十字相乘法分解,再利用提公因式法进行因式分解即可得【详解】解:(1)原式;(2)原式;(3),;(4)原式【点睛】本题考查了因式分解和因式分解的应用,熟练掌握并灵活运用因式分解的各方法是解题关键3、(1)0;(2)3x【解析】【分析】(1)根据题意,得=,合并同类项即可;(2)先提取公因式3x,后套用完全平方公式即可【详解】(1)2原式=2+-30(2)原式3x(4x4)3x【点睛】本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键4、(1)-5x(x-5);(2)xy(2x-y)2【解析】【分析】(1)提取公因式即可因式分解;(2)先提取公因式,进而根据完全平方公式进行因式分解即可【详解】解:(1)(2)【点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论