版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,内接于,若,则ABCD2已知O的半径为3,圆心O到直线L的距离为2,则直线L与O的位置关系是()A相交B相切C相离D不能确定3如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心
2、,大于MN的长为半径画弧,两弧在第二象限交于点P若点P的坐标为(2a,b+1),则a与b的数量关系为( )Aa=bB2a+b=1C2ab=1D2a+b=14如图,在矩形ABCD中,AB5,AD3,动点P满足SPABS矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()ABC5D5已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )A平均数B标准差C中位数D众数6已知二次函数的图象如图所示,若,是这个函数图象上的三点,则的大小关系是( )ABCD7某果园2011年水果产量为100吨
3、,2013年水果产量为144吨,求该果园水果产量的年平均增长率设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )A144(1x)2=100B100(1x)2=144C144(1+x)2=100D100(1+x)2=1448如图,将周长为8的ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )A8B10C12D169方程x24x+50根的情况是()A有两个不相等的实数根B有两个相等的实数根C有一个实数根D没有实数根106的相反数为A-6B6CD二、填空题(本大题共6个小题,每小题3分,共18分)11分解因式:4ax2-ay2=_.12如图,四边形ABCD是O的内接四边形,若B
4、OD=88,则BCD的度数是_13如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为_个.14若一个多边形的每一个外角都等于 40,则这个多边形的内角和是_.15如图,已知AB是O的直径,点C在O上,过点C的切线与AB的延长线交于点P,连接AC,若A=30,PC=3,则BP的长为 16若不等式组x4xm 的解集是x4,则m的取值范围是_三、解答题(共8题,共72分)17(8分)实践体验:(1)如图1:四边形ABCD是矩形,试在AD边上找一点P,使BCP为等腰三角形;(2)如图2:矩形ABCD中,AB=13,AD=12,点E在AB边上,BE=3,点
5、P是矩形ABCD内或边上一点,且PE=5,点Q是CD边上一点,求PQ得最值;问题解决:(3)如图3,四边形ABCD中,ADBC,C=90,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值18(8分)(1)计算:()1+(2018)04cos30(2)解不等式组:,并把它的解集在数轴上表示出来19(8分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FGBE交AE于点G(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接
6、AM交DE于点O求证:FOED=ODEF20(8分)如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点作,交直线于点作交直线于点,连接(1)由题意易知,观察图,请猜想另外两组全等的三角形 ; ;(2)求证:四边形是平行四边形;(3)已知,的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由21(8分)如图,在平面直角坐标系中,直线y=x4与x轴、y轴分别交于A、B两点,抛物线y=x2bxc经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD轴于D,交AB于点E当点P运动
7、到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由22(10分)如果a2+2a-1=0,求代数式的值.23(12分)计算:|1|2sin45+24某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元若该公司对此项计划的投资不低于1536万元,不高于1552万元请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案
8、生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据圆周角定理求出,根据三角形内角和定理计算即可【详解】解:由圆周角定理得,故选:B【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键2、A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:dr;相切:d=r;相离:dr;即
9、可选出答案解:O的半径为3,圆心O到直线L的距离为2,32,即:dr,直线L与O的位置关系是相交故选A考点:直线与圆的位置关系3、B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,2a+b=1故选B4、D【解析】解:设ABP中AB边上的高是hSPAB=S矩形ABCD, ABh=ABAD,h=AD=2,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离在RtABE中,AB=5,AE=2+2=4,BE= =,即PA+PB的最小值为故选D5、B【解析】试题分析:根据样本A
10、,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为xi,则样本B中的数据为yi=xi+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择6、A【解析】先求出二次函数的对称轴,结合二次函数的增减性即可判断【详解】解:二次函数的对称轴为直线,抛物线开口向下,当时,y随x增大而增大,故答案为:A【点睛】本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性7、D【解析】试题分析:2013年的产量=2011年的产量(1+年平均增长率)2,把相关数值代入即可解:
11、2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键8、B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案根据题意,将周长为8个单位的ABC沿边BC向右平移1个单位得到DEF,AD=1,BF=BC+CF=BC+1,DF=AC;又AB+BC+AC=8,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1故选C“点睛”本题考查平移的基本性质:平移
12、不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到CF=AD,DF=AC是解题的关键9、D【解析】解: a=1,b=4,c=5,=b24ac=(4)2415=40,所以原方程没有实数根10、A【解析】根据相反数的定义进行求解.【详解】1的相反数为:1故选A.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.二、填空题(本大题共6个小题,每小题3分,共18分)11、a(2x+y)(2x-y)【解析】首先提取公因式a,再利用平方差进行分解即可【详解】原式=a(4x2-y2)=a(2x+y)(2x
13、-y),故答案为a(2x+y)(2x-y)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止12、136【解析】由圆周角定理得,A=BOD=44,由圆内接四边形的性质得,BCD=180-A=136【点睛】本题考查了1.圆周角定理;2. 圆内接四边形的性质.13、8【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,搭成这个几何体的小正方体的个数最少是5+2+1=8(个)故答案
14、为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数14、【解析】根据任何多边形的外角和都是360度,先利用36040求出多边形的边数,再根据多边形的内角和公式(n-2)180计算即可求解【详解】解:多边形的边数是:36040=9,则内角和是:(9-2)180=1260故答案为1260【点睛】本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键15、3【解析】试题分析:连接OC,已知OA=OC,A=30,所以OCA=A=30,由三角形外角的
15、性质可得COB=A+ACO=60,又因PC是O切线,可得PCO=90,P=30,再由PC=3,根据锐角三角函数可得OC=PCtan30=3,PC=2OC=23,即可得PB=POOB=3.考点:切线的性质;锐角三角函数16、m1【解析】不等式组x4xm的解集是x1,m1,故答案为m1三、解答题(共8题,共72分)17、(1)见解析;(2)PQmin=7,PQmax=13;(3) Smin=,Smax=18.【解析】(1)根据全等三角形判定定理求解即可.(2)以E为圆心,以5为半径画圆,当E、P、Q三点共线时最PQ最小,当P点在位置时PQ最大,分类讨论即可求解.(3)以E为圆心,以2为半径画圆,分
16、类讨论出P点在位置时,四边形PADC面积的最值即可.【详解】(1)当P为AD中点时,BCP为等腰三角形.(2)以E为圆心,以5为半径画圆 当E、P、Q三点共线时最PQ最小,PQ的最小值是12-5=7. 当P点在位置时PQ最大,PQ的最大值是(3)以E为圆心,以2为半径画圆.当点p为位置时,四边形PADC面积最大.当点p为位置时,四边形PADC最小=四边形+三角形=.【点睛】本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键.18、 (1)-3;(2).【解析】分析:(1)代入30角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;(2)按照解
17、一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.(1)原式= = -3.(2) 解不等式得: ,解不等式得:,不等式组的解集为:不等式组的解集在数轴上表示:点睛:熟记零指数幂的意义:,(,为正整数)即30角的余弦函数值是本题解题的关键.19、(1)证明见解析;(2)AG=;(3)证明见解析.【解析】(1)根据正方形的性质得到ADBC,ABCD,ADCD,根据相似三角形的性质列出比例式,等量代换即可;(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;(3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BMBE,得到GFFH,由GFAD,得到,等量代换得到,即,于
18、是得到结论【详解】解:(1)四边形ABCD是正方形,ADBC,ABCD,AD=CD,GFBE,GFBC,GFAD,ABCD,AD=CD,GF=BF;(2)EB=1,BC=4,=4,AE=,=4,AG=;(3)延长GF交AM于H,GFBC,FHBC,BM=BE,GF=FH,GFAD, ,FOED=ODEF【点睛】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等20、(1);(2)见解析;(3)存在,2【解析】(1)利用正方形的性质及全等三角形的判定方法证明全等即可;(2)由(1)可知,则有,从而得到,最后利用一组对边
19、平行且相等即可证明;(3)由(1)可知,则,从而得到是等腰直角三角形,则当最短时,的面积最小,再根据AB的值求出PB的最小值即可得出答案【详解】解:(1)四边形是正方形,在和中,在和中,故答案为;(2)证明:由(1)可知,四边形是平行四边形.(3)解:存在,理由如下:是等腰直角三角形,最短时,的面积最小,当时,最短,此时,的面积最小为.【点睛】本题主要考查全等三角形的判定及性质,平行四边形的判定,掌握全等三角形的判定方法和平行四边形的判定方法是解题的关键21、(1)y=x22x1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(2,6)(2)存在这样的直线l,使得MON为等腰
20、三角形所求Q点的坐标为(,2)或(,2)或(,2)或(,2)【解析】解:(1)直线y=x+1与x轴、y轴分别交于A、B两点,A(1,0),B(0,1)抛物线y=x2bxc经过A、B两点,解得抛物线解析式为y=x22x1令y=0,得x22x1=0,解得x1=1,x2=1,C(1,0)(2)如图1,设D(t,0)OA=OB,BAO=15E(t,t1),P(t,t22t1)PE=yPyE=t22t1t1=t21t=(t+2)2+1当t=-2时,线段PE的长度有最大值1,此时P(2,6)(2)存在如图2,过N点作NHx轴于点H设OH=m(m0),OA=OB,BAO=15NH=AH=1m,yQ=1m又M
21、为OA中点,MH=2m当MON为等腰三角形时:若MN=ON,则H为底边OM的中点,m=1,yQ=1m=2由xQ22xQ1=2,解得点Q坐标为(,2)或(,2)若MN=OM=2,则在RtMNH中,根据勾股定理得:MN2=NH2MH2,即22=(1m)2(2m)2,化简得m26m8=0,解得:m1=2,m2=1(不合题意,舍去)yQ=2,由xQ22xQ1=2,解得点Q坐标为(,2)或(,2)若ON=OM=2,则在RtNOH中,根据勾股定理得:ON2=NH2OH2,即22=(1m)2m2,化简得m21m6=0,=80,此时不存在这样的直线l,使得MON为等腰三角形综上所述,存在这样的直线l,使得MON为等腰三角形所求Q点的坐标为(,2)或(,2)或(,2)或(,2)(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标(2)求出线段PE长度的表达式,设D点横
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年投资款转为项目融资借款合同范本及合规审查3篇
- 2025年潮州货运资格证题库在线练习
- 2025年淮安道路货运从业资格证模拟考试官方题下载
- 2025年大同考货运从业资格证
- 2025年货运从业资格证考试技巧与方法
- 洛阳理工学院《大数据平台核心技术》2023-2024学年第一学期期末试卷
- 火车站采暖系统施工协议
- 2024年物业抵押借款合同
- 商业地带净水机租赁合同协议书
- 文化场馆改造增补合同
- 2024至2030年中国甲醚化氨基树脂行业投资前景及策略咨询研究报告
- 贵州省建筑工程施工资料管理导则
- 2024年度钢模板生产与销售承包合同3篇
- 《QHSE体系培训》课件
- 计量经济学论文-城镇单位就业人员工资总额的影响因素
- 《农业企业经营管理》试题及答案(U)
- 山东省聊城市2024-2025学年高一上学期11月期中物理试题
- 孙悟空课件教学课件
- 华南理工大学《自然语言处理》2023-2024学年期末试卷
- 新能源行业光伏发电与储能技术方案
- 中国高血压防治指南(2024年修订版)要点解读
评论
0/150
提交评论