版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-PAGE . z数学2必修第一章 空间几何体根底训练A组一、选择题1有一个几何体的三视图如以下图所示,这个几何体应是一个( )A.棱台 B.棱锥 C.棱柱 D.都不对 主视图 左视图 俯视图2棱长都是的三棱锥的外表积为 A. B. C. D. 3长方体的一个顶点上三条棱长分别是,且它的个顶点都在同一球面上,则这个球的外表积是 A B C D都不对4正方体的切球和外接球的半径之比为 A B C D5在ABC中,,假设使绕直线旋转一周,则所形成的几何体的体积是 A. B. C. D. 6底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为,它的对角线的长分别是和,则这个棱柱的侧面积是 A B C D二、
2、填空题1一个棱柱至少有 _个面,面数最少的一个棱锥有 _个顶点,顶点最少的一个棱台有 _条侧棱。2假设三个球的外表积之比是,则它们的体积之比是_。3正方体中,是上底面中心,假设正方体的棱长为,则三棱锥的体积为_。4如图,分别为正方体的面、面的中心,则四边形 在该正方体的面上的射影可能是_。5一个长方体共一顶点的三个面的面积分别是、,这个 长方体的对角线长是_;假设长方体的共顶点的三个侧面面积分别为,则它的体积为_.三、解答题1养路处建造圆锥形仓库用于贮藏食盐供融化高速公路上的积雪之用,已建的仓库的底面直径为,高,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面
3、直径比原来大高不变;二是高度增加 (底面直径不变)。分别计算按这两种方案所建的仓库的体积;分别计算按这两种方案所建的仓库的外表积;哪个方案更经济些?2将圆心角为,面积为的扇形,作为圆锥的侧面,求圆锥的外表积和体积 数学2必修第一章 空间几何体综合训练B组一、选择题1如果一个水平放置的图形的斜二测直观图是一个底面为,腰和上底均为的等腰梯形,则原平面图形的面积是 A B C D 2半径为的半圆卷成一个圆锥,则它的体积为 A B C D3一个正方体的顶点都在球面上,它的棱长为,则球的外表积是 4圆台的一个底面周长是另一个底面周长的倍,母线长为,圆台的侧面积为,则圆台较小底面的半径为 A 5棱台上、下
4、底面面积之比为,则棱台的中截面分棱台成两局部的体积之比是( )A 6如图,在多面体中,平面是边长为的正方形,,且与平面的距离为,则该多面体的体积为 A 二、填空题1圆台的较小底面半径为,母线长为,一条母线和底面的一条半径有交点且成,则圆台的侧面积为_。2中,将三角形绕直角边旋转一周所成的几何体的体积为_。 3等体积的球和正方体,它们的外表积的大小关系是_4假设长方体的一个顶点上的三条棱的长分别为,从长方体的一条对角线的一个端点出发,沿外表运动到另一个端点,其最短路程是_。5 图1为长方体积木块堆成的几何体的三视图,此几何体共由_块木块堆成;图2中的三视图表示的实物为_。图2图16假设圆锥的外表
5、积为平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_。三、解答题1.有一个正四棱台形状的油槽,可以装油,假设它的两底面边长分别等于和,求它的深度为多少?2圆台的上下底面半径分别是,且侧面面积等于两底面面积之和,求该圆台的母线长. 数学2必修第一章 空间几何体提高训练C组一、选择题1以下图是由哪个平面图形旋转得到的 A B C D2过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三局部的面积之比为 A. B. C. D. 3在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三棱锥后 ,剩下的几何体的体积是 A. B. C. D. 4圆柱与圆锥的底面
6、积相等,高也相等,它们的体积分别为和,则 A. B. C. D. 5如果两个球的体积之比为,则两个球的外表积之比为( )A. B. C. D. 6有一个几何体的三视图及其尺寸如下单位,则该几何体的外表积及体积为:65A. , B. ,C. , D. 以上都不正确二、填空题1. 假设圆锥的外表积是,侧面展开图的圆心角是,则圆锥的体积是_。2.一个半球的全面积为,一个圆柱与此半球等底等体积,则这个圆柱的全面积是.3球的半径扩大为原来的倍,它的体积扩大为原来的 _ 倍.4一个直径为厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高厘米则此球的半径为_厘米.5棱台的上下底面面积分别为,高为,则
7、该棱台的体积为_。三、解答题1. 如图在底半径为,母线长为的圆锥中接一个高为的圆柱,求圆柱的外表积2如图,在四边形中,求四边形绕旋转一周所成几何体的外表积及体积.数学2必修第二章 点、直线、平面之间的位置关系根底训练A组一、选择题1以下四个结论:两条直线都和同一个平面平行,则这两条直线平行。两条直线没有公共点,则这两条直线平行。两条直线都和第三条直线垂直,则这两条直线平行。一条直线和一个平面无数条直线没有公共点,则这条直线和这个平面平行。其中正确的个数为 A B C D2下面列举的图形一定是平面图形的是 A有一个角是直角的四边形 B有两个角是直角的四边形 C有三个角是直角的四边形 D有四个角是
8、直角的四边形3垂直于同一条直线的两条直线一定 A平行 B相交 C异面 D以上都有可能4如右图所示,正三棱锥顶点在底面的射影是底面正三角形的中心中,分别是 的中点,为上任意一点,则直线与所成的角的大小是A B C D随点的变化而变化。5互不重合的三个平面最多可以把空间分成 个局部 A B C D6把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为 A B C D二、填空题是两条异面直线,则与的位置关系_。直线与平面所成角为,则与所成角的取值围是 _ 3棱长为的正四面体有一点,由点向各面引垂线,垂线段长度分别为,则的值为。4直二面角的棱上有一点,在平面各有一条射线,
9、与成,则。5以下命题中:1、平行于同一直线的两个平面平行;2、平行于同一平面的两个平面平行;3、垂直于同一直线的两直线平行;4、垂直于同一平面的两直线平行.其中正确的个数有_。三、解答题1为空间四边形的边上的点,且求证:. 2自二面角一点分别向两个半平面引垂线,求证:它们所成的角与二两角的平面角互补。数学2必修第二章 点、直线、平面之间的位置关系综合训练B组一、选择题1各顶点都在一个球面上的正四棱柱其底面是正方形,且侧棱垂直于底面高为,体积为,则这个球的外表积是 2在四面体中,分别是的中点,假设,则与所成的角的度数为3三个平面把空间分成局部时,它们的交线有条条条条或条4在长方体,底面是边长为的
10、正方形,高为,则点到截面的距离为( ) A B C D 5直三棱柱中,各侧棱和底面的边长均为,点是上任意一点,连接,则三棱锥的体积为 A B C D6以下说法不正确的选项是 A空间中,一组对边平行且相等的四边形是一定是平行四边形;B同一平面的两条垂线一定共面;C过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面;D过一条直线有且只有一个平面与平面垂直.二、填空题1正方体各面所在的平面将空间分成_局部。翰林汇2空间四边形中,分别是的中点,则与的位置关系是_;四边形是_形;当_时,四边形是菱形;当_时,四边形是矩形;当_时,四边形是正方形3四棱锥中,底面是边长为的正方形,其他四个
11、侧面都是侧棱长为的等腰三角形,则二面角的平面角为_。翰林汇4三棱锥则二面角的大小为_翰林汇5为边长为的正三角形所在平面外一点且,则到的距离为_。三、解答题1直线,且直线与都相交,求证:直线共面。2求证:两条异面直线不能同时和一个平面垂直;3如图:是平行四边形平面外一点,分别是上的点,且=, 求证:平面数学2必修第二章 点、直线、平面之间的位置关系提高训练C组一、选择题1设是两条不同的直线,是三个不同的平面,给出以下四个命题:假设,则假设,则假设,则假设,则 其中正确命题的序号是 ( )A和B和C和D和2假设长方体的三个面的对角线长分别是,则长方体体对角线长为 A B C D3在三棱锥中,底面,
12、则点到平面的距离是( ) A B C D4在正方体中,假设是的中点,则直线垂直于 A B C D5三棱锥的高为,假设三个侧面两两垂直,则为的 A心 B外心 C垂心 D重心6在四面体中,棱的长为,其余各棱长都为,则二面角的余弦值为 A B C D7四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角等于 A B C D二、填空题1点到平面的距离分别为和,则线段的中点到平面的距离为_2从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为_。3一条直线和一个平面所成的角为,则此直线和平面不经过斜足的所有直线所成的角中最大的角是_4正四棱锥顶点在底面的射影是底面
13、正方形的中心的体积为,底面对角线的长为,则侧面与底面所成的二面角等于_。5在正三棱锥顶点在底面的射影是底面正三角形的中心中,,过作与分别交于和的截面,则截面的周长的最小值是_ 三、解答题1正方体中,是的中点求证:平面平面2求证:三个两两垂直的平面的交线两两垂直。3.在三棱锥中,是边长为的正三角形,平面平面,、分别为的中点。证明:;求二面角-的大小;求点到平面的距离。数学2必修第三章 直线与方程根底训练A组一、选择题1设直线的倾斜角为,且,则满足 ABCD2过点且垂直于直线 的直线方程为 A BC D3过点和的直线与直线平行,则的值为A B C D4,则直线通过 A第一、二、三象限B第一、二、四
14、象限C第一、三、四象限D第二、三、四象限5直线的倾斜角和斜率分别是 A BC,不存在 D,不存在6假设方程表示一条直线,则实数满足 A B CD,二、填空题1点 到直线的距离是_.2直线假设与关于轴对称,则的方程为_;假设与关于轴对称,则的方程为_;假设与关于对称,则的方程为_;假设原点在直线上的射影为,则的方程为_。4点在直线上,则的最小值是_.5直线过原点且平分的面积,假设平行四边形的两个顶点为,则直线的方程为_。三、解答题1直线, 1系数为什么值时,方程表示通过原点的直线; 2系数满足什么关系时与坐标轴都相交; 3系数满足什么条件时只与*轴相交; 4系数满足什么条件时是*轴; 5设为直线
15、上一点,证明:这条直线的方程可以写成2求经过直线的交点且平行于直线的直线方程。3经过点并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程。4过点作一直线,使它与两坐标轴相交且与两轴所围成的三角形面积为数学2必修第三章 直线与方程综合训练B组一、选择题1点,则线段的垂直平分线的方程是 A BC D2假设三点共线 则的值为 3直线在轴上的截距是 ABCD4直线,当变动时,所有直线都通过定点 A BC D5直线与的位置关系是 A平行 B垂直 C斜交 D与的值有关6两直线与平行,则它们之间的距离为 A B C D7点,假设直线过点与线段相交,则直线的斜率的取值围是 A B C D二
16、、填空题1方程所表示的图形的面积为_。2与直线平行,并且距离等于的直线方程是_。3点在直线上,则的最小值为4将一坐标纸折叠一次,使点与点重合,且点与点重合,则的值是_。设,则直线恒过定点三、解答题1求经过点并且和两个坐标轴围成的三角形的面积是的直线方程。2一直线被两直线截得线段的中点是点,当点分别为,时,求此直线方程。3.把函数在及之间的一段图象近似地看作直线,设,证明:的近似值是:4直线和轴,轴分别交于点,在线段为边在第一象限作等边,如果在第一象限有一点使得和的面积相等,求的值。数学2必修第三章 直线与方程提高训练C组一、选择题1如果直线沿轴负方向平移个单位再沿轴正方向平移个单位后,又回到原
17、来的位置,则直线的斜率是 AB CD2假设都在直线上,则用表示为 A B C D 3直线与两直线和分别交于两点,假设线段的中点为,则直线的斜率为 A B C D 4中,点,的中点为,重心为,则边的长为 A B C D5以下说法的正确的选项是 A经过定点的直线都可以用方程表示B经过定点的直线都可以用方程表示C不经过原点的直线都可以用方程表示D经过任意两个不同的点的直线都可以用方程表示6假设动点到点和直线的距离相等,则点的轨迹方程为 A B C D二、填空题1直线与关于直线对称,直线,则的斜率是_.2直线上一点的横坐标是,假设该直线绕点逆时针旋转得直线,则直线的方程是3一直线过点,并且在两坐标轴上
18、截距之和为,这条直线方程是_4假设方程表示两条直线,则的取值是5当时,两条直线、的交点在象限三、解答题1经过点的所有直线中距离原点最远的直线方程是什么?2求经过点的直线,且使,到它的距离相等的直线方程。3点,点在直线上,求取得最小值时点的坐标。4求函数的最小值。数学2必修第四章 圆与方程根底训练A组一、选择题圆关于原点对称的圆的方程为 ( )ABCD2假设为圆的弦的中点,则直线的方程是 A. B. C. D. 3圆上的点到直线的距离最大值是 A B C D4将直线,沿轴向左平移个单位,所得直线与圆相切,则实数的值为ABCD5在坐标平面,与点距离为,且与点距离为的直线共有 A条 B条C条 D条6
19、圆在点处的切线方程为 A B C D二、填空题1假设经过点的直线与圆相切,则此直线在轴上的截距是 _.2由动点向圆引两条切线,切点分别为,则动点的轨迹方程为。3圆心在直线上的圆与轴交于两点,则圆的方程为. 圆和过原点的直线的交点为则的值为_。5是直线上的动点,是圆的切线,是切点,是圆心,则四边形面积的最小值是_。三、解答题1点在直线上,求的最小值。2求以为直径两端点的圆的方程。3求过点和且与直线相切的圆的方程。4圆和轴相切,圆心在直线上,且被直线截得的弦长为,求圆的方程。数学2必修第四章 圆与方程综合训练B组一、选择题1假设直线被圆所截得的弦长为,则实数的值为 A或 B或 C或 D或2直线与圆
20、交于两点,则是原点的面积为 3直线过点,与圆有两个交点时,斜率的取值围是( )A B CD4圆C的半径为,圆心在轴的正半轴上,直线与圆C相切,则圆C的方程为 ABCD5假设过定点且斜率为的直线与圆在第一象限的局部有交点,则的取值围是 A. B. C. D. 设直线过点,且与圆相切,则的斜率是ABCD二、填空题1直线被曲线所截得的弦长等于2圆:的外有一点,由点向圆引切线的长_ 对于任意实数,直线与圆的位置关系是_4动圆的圆心的轨迹方程是.为圆上的动点,则点到直线的距离的最小值为_.三、解答题求过点向圆所引的切线方程。求直线被圆所截得的弦长。实数满足,求的取值围。两圆,求1它们的公共弦所在直线的方
21、程;2公共弦长。数学2必修第四章 圆与方程提高训练C组一、选择题1圆:和圆:交于两点,则的垂直平分线的方程是 B C D2 方程表示的曲线是 A一个圆 B两个半圆 C两个圆 D半圆3圆:及直线,当直线被截得的弦长为时,则 A BCD4圆的圆心到直线的距离是 ABC D5直线截圆得的劣弧所对的圆心角为 A B C D6圆上的点到直线的距离的最小值是 A6 B4 C5 D1 7两圆和的位置关系是 A相离 B相交 C切 D外切二、填空题1假设点在轴上,且,则点的坐标为2假设曲线与直线始终有交点,则的取值围是_;假设有一个交点,则的取值围是_;假设有两个交点,则的取值围是_;把圆的参数方程化成普通方程
22、是_圆的方程为,过点的直线与圆交于两点,假设使最小,则直线的方程是_。如果实数满足等式,则的最大值是_。6过圆外一点,引圆的两条切线,切点为,则直线的方程为_。三、解答题1求由曲线围成的图形的面积。2设求的最小值。3求过点且圆心在直线上的圆的方程。4平面上有两点,点在圆周上,求使取最小值时点的坐标。数学2必修第一章 空间几何体 答案根底训练A组一、选择题 1. A 从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台2.A 因为四个面是全等的正三角形,则3.B 长方体的对角线是球的直径,4.D 正方体的棱长是切球的直径,正方体的对角线是外接球的直径,设棱长是5.D 6.D 设底面
23、边长是,底面的两条对角线分别为,而而即二、填空题1. 符合条件的几何体分别是:三棱柱,三棱锥,三棱台2.3. 画出正方体,平面与对角线的交点是对角线的三等分点,三棱锥的高或:三棱锥也可以看成三棱锥,显然它的高为,等腰三角形为底面。4. 平行四边形或线段5 设则 设则 三、解答题1解:1如果按方案一,仓库的底面直径变成,则仓库的体积如果按方案二,仓库的高变成,则仓库的体积2如果按方案一,仓库的底面直径变成,半径为.棱锥的母线长为则仓库的外表积如果按方案二,仓库的高变成.棱锥的母线长为 则仓库的外表积3 ,2. 解:设扇形的半径和圆锥的母线都为,圆锥的半径为,则;第一章 空间几何体 综合训练B组一
24、、选择题 1.A 恢复后的原图形为一直角梯形2.A 3.B 正方体的顶点都在球面上,则球为正方体的外接球,则,4.A 5.C 中截面的面积为个单位, 6.D 过点作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,二、填空题1. 画出圆台,则2.旋转一周所成的几何体是以为半径,以为高的圆锥,3. 设,4. 从长方体的一条对角线的一个端点出发,沿外表运动到另一个端点,有两种方案5.1 2圆锥 6 设圆锥的底面的半径为,圆锥的母线为,则由得, 而,即,即直径为 三、解答题解:2. 解:空间几何体 提高训练C组一、选择题 1.A 几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得2.B 从此
25、圆锥可以看出三个圆锥,3.D 4.D 5.C 6.A 此几何体是个圆锥,二、填空题1 设圆锥的底面半径为,母线为,则,得,得,圆锥的高2.3.4.5. 三、解答题1.解:圆锥的高,圆柱的底面半径,解:第二章 点、直线、平面之间的位置关系根底训练A组一、选择题 1. A 两条直线都和同一个平面平行,这两条直线三种位置关系都有可能两条直线没有公共点,则这两条直线平行或异面两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能一条直线和一个平面无数条直线没有公共点,则这条直线也可在这个平面2. D 对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形
26、沿着非直角所在的对角线翻折;在翻折的过程中,*个瞬间出现了有三个直角的空间四边形3.D 垂直于同一条直线的两条直线有三种位置关系4.B 连接,则垂直于平面,即,而,5.D 八卦图 可以想象为两个平面垂直相交,第三个平面与它们的交线再垂直相交6.C 当三棱锥体积最大时,平面,取的中点,则是等要直角三角形,即二、填空题1.异面或相交 就是不可能平行2.直线与平面所成的的角为与所成角的最小值,当在适当旋转就可以得到,即与所成角的的最大值为3. 作等积变换:而4.或 不妨固定,则有两种可能5. 对于1、平行于同一直线的两个平面平行,反例为:把一支笔放在翻开的课本之间;2是对的;3是错的;4是对的三、解
27、答题1.证明:2.略第二章 点、直线、平面之间的位置关系 综合训练B组一、选择题 1.C 正四棱柱的底面积为,正四棱柱的底面的边长为,正四棱柱的底面的对角线为,正四棱柱的对角线为,而球的直径等于正四棱柱的对角线,即,2.D 取的中点,则则与所成的角3.C 此时三个平面两两相交,且有三条平行的交线4.C 利用三棱锥的体积变换:,则5.B 6. D 一组对边平行就决定了共面;同一平面的两条垂线互相平行,因而共面; 这些直线都在同一个平面即直线的垂面;把书本的书脊垂直放在桌上就明确了二、填空题1 分上、中、下三个局部,每个局部分空间为个局部,共局部2异面直线;平行四边形;且34 注意在底面的射影是斜
28、边的中点 5三、解答题 1证明:,不妨设共面于平面,设,即,所以三线共面2提示:反证法3略第二章 点、直线、平面之间的位置关系 提高训练C组一、选择题 1 A 假设,则,而同平行同一个平面的两条直线有三种位置关系假设,则,而同垂直于同一个平面的两个平面也可以相交2C 设同一顶点的三条棱分别为,则得,则对角线长为3B 作等积变换4B 垂直于在平面上的射影5C 6C 取的中点,取的中点,7C 取的中点,则,在中,二、填空题1.或 分在平面的同侧和异侧两种情况2. 每个外表有个,共个;每个对角面有个,共个3. 垂直时最大 4. 底面边长为,高为,5. 沿着将正三棱锥侧面展开,则共线,且三、解答题:略
29、第三章 直线和方程根底训练A组一、选择题 1.D 2.A 设又过点,则,即3.B 4.C 5.C 垂直于轴,倾斜角为,而斜率不存在6.C 不能同时为二、填空题1.2.3.4.可看成原点到直线上的点的距离的平方,垂直时最短:5. 平分平行四边形的面积,则直线过的中点三、解答题解:1把原点代入,得;2此时斜率存在且不为零即且;3此时斜率不存在,且不与轴重合,即且;4且5证明:在直线上。解:由,得,再设,则为所求。解:当截距为时,设,过点,则得,即;当截距不为时,设或过点,则得,或,即,或这样的直线有条:,或。解:设直线为交轴于点,交轴于点, 得,或 解得或 ,或为所求。第三章 直线和方程 综合训练B组一、选择题 1.B 线段的中点为垂直平分线的,2.A 3.B 令则4.C 由得对于任何都成立,则5.B 6.D 把变化为,则7.C 二、填空题1.方程所表示的图形是一个正方形,其边长为2.,或设直线为3.的最小值为原点到直线的距离:4 点与点关于对称,则点与点 也关于对称,则,得5.变化为 对于任何都成立,则三、解答题1.解:设直线为交轴于点,交轴于点, 得,或 解得或 ,或为所求。2.解:由得两直线交于,记为,则直线垂直于所求直线,即,或,或,即,或为所求。证明:三点共线, 即 即的近似值是:解:由可得直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东食品药品职业学院《商务英语函电与合同》2023-2024学年第一学期期末试卷
- 广东省外语艺术职业学院《通风空调A》2023-2024学年第一学期期末试卷
- 广东女子职业技术学院《现代设计技术》2023-2024学年第一学期期末试卷
- 七年级上册《1.2.4绝对值》课件与作业
- 广东茂名幼儿师范专科学校《测量学基础》2023-2024学年第一学期期末试卷
- 广东茂名健康职业学院《习思想》2023-2024学年第一学期期末试卷
- 五年级数学(小数乘法)计算题专项练习及答案汇编
- 大学生心理健康教育(兰州大学)学习通测试及答案
- 土木实习总结15篇
- 云南玉溪市2021高考英语优生自选练习(8)及答案
- 兽医学英语词汇【参考】
- 行政个人年终述职报告
- 第12课《词四首》课件+2023-2024学年统编版语文九年级下册
- 《发电厂电气部分》考试题库
- 建筑施工安全生产包保责任实施方案
- 2024年R1快开门式压力容器操作证考试题库及答案
- 《数学物理方法》期末测试卷及答案
- 铁路工务劳动安全
- 直播电商年终总结
- 沪科版九年级物理下册教案全册
- PAS 2050:2011-商品和服务在生命周期内的温室气体排放评价规范(英文)
评论
0/150
提交评论