《数学物理方法》期末测试卷及答案_第1页
《数学物理方法》期末测试卷及答案_第2页
《数学物理方法》期末测试卷及答案_第3页
《数学物理方法》期末测试卷及答案_第4页
《数学物理方法》期末测试卷及答案_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页共2页《数学物理方法》考试试卷(闭卷时间120分钟)一、单项选择题(每小题2分,共10分)1.如果幂级数的收敛半径为,则该幂级数一定()A.在点收敛;B.在点发散;C.在点收敛;D.在点发散.2.设,若为解析函数,则()A.;B.;C.;D..3.函数的傅里叶变换结果为A.;B.;C.;D..4.偏微分方程为A.齐次线性方程;B.非齐次非线性方程;C.非齐次线性方程;D.齐次非线性方程.5.(为正整数)阶第一类贝塞尔函数的零点个数为()A.0个;B.1个;C.个;D.无数个.二、填空题(每空2分,共10分)6.计算函数.7.设为逆时针方向沿圆周的简单闭合曲线,则积分.8.函数在孤立奇点处的留数为.9.拉普拉斯变换.10.设为勒让德多项式,则.三、简答题(10分)11.二阶线性常微分方程的标准形式为:,试简述方程的常点和正则奇点,并写出常点和正则奇点邻域内方程级数解的形式.四、证明题(10分)12.证明函数在点可导,但在复平面上处处不解析.五、计算题(每小题10分,共60分)13.计算积分.14.分别在区域和内将以为中心展开为罗朗级数.15.求函数的傅里叶变换.16.求函数的拉普拉斯变换.17.由达朗贝尔公式求解初值问题.18.应用分离变量法求解如下定解问题.《数学物理方法》考试试卷参考答案一、单项选择题(每小题2分,共10分)1.A;2.B;3.C;4.A;5.D.二、填空题(每空2分,共10分)6.;7.;8.;9.;10.1.三、简答题(10分)11.如果和在点的邻域内解析,则为方程的常点.如果和在点的邻域内解析,则为正则奇点.在常点的邻域内方程存在一解析解,可展开为泰勒级数.在正则奇点的邻域内方程至少存在一个如下形式的级数解.四、证明题(10分)12.已知,所以,.偏导数,,,,它们均存在且连续.在点,,,满足柯西-黎曼条件,所以函数在点可导,且导数.在以外的点,函数的偏导数存在且连续,但不满足柯西-黎曼条件,因此导数不存在.所以函数在整个复平面上不解析.五、计算题(每小题10分,共60分)13.函数在圆周内只有一个三阶极点,可得留数.由留数定理可得.14.当时,,当时,,.15..16.,.17.由达朗贝尔公式可得,.18.(1)令,代入泛定方程可得两个常微分方程,.代入齐次边界条件可得:.(2)求解本征值问题可得本征值:,本征函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论