版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求
2、的。1已知各项都为正的等差数列中,若,成等比数列,则( )ABCD2设i是虚数单位,若复数()是纯虚数,则m的值为( )ABC1D33已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为( )ABCD4已知函数,则( )A函数在上单调递增B函数在上单调递减C函数图像关于对称D函数图像关于对称5设,分别为双曲线(a0,b0)的左、右焦点,过点作圆 的切线与双曲线的左支交于点P,若,则双曲线的离心率为( )ABCD6在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=
3、1,2).已知太阳的星等是26.7,天狼星的星等是1.45,则太阳与天狼星的亮度的比值为( )A1010.1B10.1Clg10.1D1010.17已知函数的定义域为,则函数的定义域为( )ABCD8五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( )ABCD9公比为2的等比数列中存在两项,满足,则的最小值为( )ABCD10若集合,则=( )ABCD11设复数满足,在复平面内对应的点为,则不可能为( )ABCD12已知函数的定义域为,且,当时,.若,则函数在上的最大值为( )A4B6C3D8二、填空题:本题共4小题,每小题5分,共20分。13已知双
4、曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为_.14九章算术中记载了“今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少。问人数、猪价各多少?”.设分别为人数、猪价,则_,_.15在平面直角坐标系中,曲线上任意一点到直线的距离的最小值为_16某部队在训练之余,由同一场地训练的甲乙丙三队各出三人,组成小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为_.三、解答题:共70分。解答应写出文字说明
5、、证明过程或演算步骤。17(12分)已知函数.()求的值;()若,且,求的值.18(12分)的内角、所对的边长分别为、,已知.(1)求的值;(2)若,点是线段的中点,求的面积.19(12分)如图,在中,的角平分线与交于点,.()求;()求的面积.20(12分)已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.21(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处
6、理(如表),得到了散点图(如图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y关于x的回归方程;(3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.22(10分)在平面直角坐标系xOy中,曲线的参数方程为(为参数)以平面直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为(1)求曲线的极坐标方程;(2)设和交点的交点为,求 的面积2022学年模拟测试卷参考答案(含详细
7、解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.2、A【答案解析】根据复数除法运算化简,结合纯虚数定义即可求得m的值.【题目详解】由复数的除法运算化简可得,因为是纯虚数,所以,故选:A.【答案点睛】本题考查了复数的概念和除法运算,属于基础题.3、B【答案解析】由双曲线的对称性可得即,又,从而可得的渐近线方程.【题目详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,所以,的渐近线方程为.故选B【答案点睛】本题考
8、查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.4、C【答案解析】依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【题目详解】解:由,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【答案点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.5、C【答案解析】设过点作圆 的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【题目详解】设过点作圆 的切线的切点为,所以是中点,.故选:C.【答案点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查
9、直观想象、逻辑推理和数学计算能力,属于中档题.6、A【答案解析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【题目详解】两颗星的星等与亮度满足,令,.故选A.【答案点睛】本题以天文学问题为背景,考查考生的数学应用意识信息处理能力阅读理解能力以及指数对数运算.7、A【答案解析】试题分析:由题意,得,解得,故选A考点:函数的定义域8、D【答案解析】三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.【题目详解】由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有种,若为第一种情况,且甲、乙两人在同一个单位,共
10、有种情况;若为第二种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率为,故甲、乙两人不在同一个单位的概率为.故选:D.【答案点睛】本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.9、D【答案解析】根据已知条件和等比数列的通项公式,求出关系,即可求解.【题目详解】,当时,当时,当时,当时,当时,当时,最小值为.故选:D.【答案点睛】本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.10、C【答案解析】求出集合,然后与集合取交集即可【题目详解】由
11、题意,则,故答案为C.【答案点睛】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题11、D【答案解析】依题意,设,由,得,再一一验证.【题目详解】设,因为,所以,经验证不满足,故选:D.【答案点睛】本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.12、A【答案解析】根据所给函数解析式满足的等量关系及指数幂运算,可得;利用定义可证明函数的单调性,由赋值法即可求得函数在上的最大值.【题目详解】函数的定义域为,且,则;任取,且,则,故,令,则,即,故函数在上单调递增,故,令,故,故函数在上的最大值为4.故选:A.【答案点睛】本题考查了指数幂的运算及
12、化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、或【答案解析】用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【题目详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,所以.联立解得或故双曲线的离心率为或.故答案为:或.【答案点睛】本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.14、10 900 【答案解析】由题意列出方程组,求解即可.【题目详解】由题意可得,解得.故答案为10 900【答案点睛】本题主要考查二元一次方程组的解法,用消元法来求解即可
13、,属于基础题型.15、【答案解析】解法一:曲线上任取一点,利用基本不等式可求出该点到直线的距离的最小值;解法二:曲线函数解析式为,由求出切点坐标,再计算出切点到直线的距离即可所求答案.【题目详解】解法一(基本不等式):在曲线上任取一点,该点到直线的距离为,当且仅当时,即当时,等号成立,因此,曲线上任意一点到直线距离的最小值为;解法二(导数法):曲线的函数解析式为,则,设过曲线上任意一点的切线与直线平行,则,解得,当时,到直线的距离;当时,到直线的距离.所以曲线上任意一点到直线的距离的最小值为.故答案为:.【答案点睛】本题考查曲线上一点到直线距离最小值的计算,可转化为利用切线与直线平行来找出切点
14、,转化为切点到直线的距离,也可以设曲线上的动点坐标,利用基本不等式法或函数的最值进行求解,考查分析问题和解决问题的能力,属于中等题.16、【答案解析】分两步进行:首先,先排第一行,再排第二行,最后排第三行;其次,对每一行选人;最后,利用计算出概率即可.【题目详解】首先,第一行队伍的排法有种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后,第一行的每个位置的人员安排有种;第二行的每个位置的人员安排有种;第三行的每个位置的人员安排有种.所以来自同一队的战士既不在同一行,也不在同一列的概率.故答案为:.【答案点睛】本题考查了分步计数原理,排列与组合知识,考查了转化能力,属于中档题.三、解答题:
15、共70分。解答应写出文字说明、证明过程或演算步骤。17、();().【答案解析】()直接代入再由诱导公式计算可得;()先得到,再根据利用两角差的余弦公式计算可得【题目详解】解:();()因为所以,由得,又因为,故,所以,所以.【答案点睛】本题考查了三角函数中的恒等变换应用,属于中档题18、(1)(2)【答案解析】(1)利用正弦定理的边化角公式,结合两角和的正弦公式,即可得出的值;(2)由题意得出,两边平方,化简得出,根据三角形面积公式,即可得出结论.【题目详解】(1)由正弦定理得即即在中,所以 (2)因为点是线段的中点,所以两边平方得由得整理得,解得或(舍)所以的面积【答案点睛】本题主要考查了
16、正弦定理的边化角公式,三角形的面积公式,属于中档题.19、();().【答案解析】试题分析:()在中,由余弦定理得,由正弦定理得,可得解;()由()可知,进而得,在中,由正弦定理得,所以的面积即可得解.试题解析:()在中,由余弦定理得 ,所以,由正弦定理得,所以.()由()可知.在中, .在中,由正弦定理得,所以.所以的面积.20、(1)直线普通方程:,曲线直角坐标方程:;(2).【答案解析】(1)消去直线参数方程中的参数即可得到其普通方程;将曲线极坐标方程化为,根据极坐标和直角坐标互化原则可得其直角坐标方程;(2)将直线参数方程代入曲线的直角坐标方程,根据参数的几何意义可知,利用韦达定理求得
17、结果.【题目详解】(1)由直线参数方程消去可得普通方程为:曲线极坐标方程可化为:则曲线的直角坐标方程为:,即(2)将直线参数方程代入曲线的直角坐标方程,整理可得:设两点对应的参数分别为:,则,【答案点睛】本题考查极坐标与直角坐标的互化、参数方程与普通方程的互化、直线参数方程中参数的几何意义的应用;求解距离之和的关键是能够明确直线参数方程中参数的几何意义,利用韦达定理来进行求解.21、(1)更适宜(2)(3)x为2时,烧开一壶水最省煤气【答案解析】(1)根据散点图是否按直线型分布作答;(2)根据回归系数公式得出y关于的线性回归方程,再得出y关于x的回归方程;(3)利用基本不等式得出煤气用量的最小值及其成立的条件.【题目详解】(1)更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型.(2)由公式可得:,所以所求回归方程为.(3)设,则煤气用量,当且仅当时取“”,即时,煤气用量最小.故x为2时,烧开一壶水最省煤气.【答案点睛】本题考查拟合模
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ETC发行实施方案
- 11-轮滑初级教学教案
- 2024年淮南职业技术学院高职单招语文历年参考题库含答案解析
- 形体行业发展趋势报告
- 2024年海南体育职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年浙江经济职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- oA鑫辰花园市场定位及规划方案对比分析教程文件
- 2024年河南女子职业学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年阆中市中医医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年江西生物科技职业学院高职单招职业适应性测试历年参考题库含答案解析
- (课件)-谈研究生培养
- 《disc性格分析》课件
- 2025年临床医师定期考核必考复习题库及答案(900题)
- 反恐应急预案3篇
- 微更新视角下老旧社区公共空间适老化设计策略研究
- 骨科2025年度工作计划
- 期末综合试卷(试题)2024-2025学年人教版数学五年级上册(含答案)
- 五年级数学(小数乘除法)计算题专项练习及答案汇编
- 急性化脓性中耳炎病人的护理
- 国家电网公司电力安全工作规程营销习题库(含答案)
- 2024ESC心房颤动管理指南解读-第一部分
评论
0/150
提交评论