2022学年安徽省舒城县龙河中学高考数学一模试卷(含解析)_第1页
2022学年安徽省舒城县龙河中学高考数学一模试卷(含解析)_第2页
2022学年安徽省舒城县龙河中学高考数学一模试卷(含解析)_第3页
2022学年安徽省舒城县龙河中学高考数学一模试卷(含解析)_第4页
2022学年安徽省舒城县龙河中学高考数学一模试卷(含解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1等差数列的前项和为,若,则数列的公差为( )A-2B2C4D72已知集合AxN|x28x,B2,3,6,C2,3,7,则( )A2,3,4,5B2,3,4,5,6C1,2,3,

2、4,5,6D1,3,4,5,6,73若复数,则( )ABCD204中,角的对边分别为,若,则的面积为( )ABCD5已知函数若函数在上零点最多,则实数的取值范围是( )ABCD6高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )A40B60C80D1007已知函数,若时,恒成立,则实数的值为( )ABCD8已知等比数列满足,则( )ABCD9已知双曲线:的左、右两个焦点分别为,若存在点满足,则该双曲线的离心率为( )A2BCD510体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝

3、正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是( )A3B4C5D611设是定义域为的偶函数,且在单调递增,则( )ABCD12已知平面和直线a,b,则下列命题正确的是( )A若,b,则B若,则C若,则D若,b,则二、填空题:本题共4小题,每小题5分,共20分。13在数列中,曲线在点处的切线经过点,下列四个结论:;数列是等比数列;其中所有正确结论的编号是_.14在区间内任意取一个数,则恰好为非负数的概率是_.15在中,内角所对的边分别是.若,则_,面积的最大值为_.16已知数列满足,若,则数列的前n项和_三、解答题:共70分。

4、解答应写出文字说明、证明过程或演算步骤。17(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查调查后,就顾客“购物体验”的满意度统计如下:满意不满意男女是否有的把握认为顾客购物体验的满意度与性别有关?若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率附表及公式:18(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.19(12分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,(1)求椭圆的方程;(2)过原点的直线l与线

5、段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.20(12分)设椭圆:的左、右焦点分别为,下顶点为,椭圆的离心率是,的面积是.(1)求椭圆的标准方程.(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.21(12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,()若,求的值;()证明:当取最小值时,与共线22(10分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:x12345y17.016.515.513.812.2(1)求y关于x的线性回归

6、方程;(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?参考公式: 2022学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【题目详解】在等差数列的前项和为,则则故选:B【答案点睛】本题考查等差数列中求由已知关系求公差,属于基础题.2、C【答案解析】根据集合的并集、补集的概念,可得结果.【题目详解】集合AxN|x28xxN|0 x8,所以集合A1,2,3,4,5,

7、6,7B2,3,6,C2,3,7,故1,4,5,6,所以1,2,3,4,5,6.故选:C.【答案点睛】本题考查的是集合并集,补集的概念,属基础题.3、B【答案解析】化简得到,再计算模长得到答案.【题目详解】,故.故选:.【答案点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.4、A【答案解析】先求出,由正弦定理求得,然后由面积公式计算【题目详解】由题意,由得,故选:A【答案点睛】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解5、D【答案解析】将函数的零点个数问题转化为函数

8、与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.【题目详解】由图知与有个公共点即可,即,当设切点,则,.故选:D.【答案点睛】本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.6、D【答案解析】由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【题目详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【答案点睛】

9、本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.7、D【答案解析】通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【题目详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得故选:D【答案点睛】本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.8、B【答案解析】由a1+a3+a5=21得 a3+a5+a7=,选B.9、B【答案解析】利用双曲线的定义和条件中的比例关系可求.【题目详解】.选B.【答案点睛】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转

10、化为a,b,c的关系式.10、B【答案解析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【题目详解】“正面朝南”“正面朝北”分别用“”“”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”可知需要的次数为4次.故选:B.【答案点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.11、C【答案解析】根据偶函数的性质,比较即可.【题目详解】解:显然,所以是定义域为的偶函数,且在单调递增,所以故选:C【答案点睛】本题考查对数的运算及偶函数的性质,是基础题.12、C【答案解析】根据线面的位置

11、关系,结合线面平行的判定定理、平行线的性质进行判断即可.【题目详解】A:当时,也可以满足,b,故本命题不正确;B:当时,也可以满足,故本命题不正确;C:根据平行线的性质可知:当,时,能得到,故本命题是正确的;D:当时,也可以满足,b,故本命题不正确.故选:C【答案点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先利用导数求得曲线在点处的切线方程,由此求得与的递推关系式,进而证得数列是等比数列,由此判断出四个结论中正确的结论编号.【题目详解】,曲线在点处的切线方程为,则.,则是首项为1,公比为的等比数列,从

12、而,.故所有正确结论的编号是.故答案为:【答案点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前项和公式,属于基础题.14、【答案解析】先分析非负数对应的区间长度,然后根据几何概型中的长度模型,即可求解出“恰好为非负数”的概率.【题目详解】当是非负数时,区间长度是,又因为对应的区间长度是,所以“恰好为非负数”的概率是.故答案为:.【答案点睛】本题考查几何概型中的长度模型,难度较易.解答问题的关键是能判断出目标事件对应的区间长度.15、1 【答案解析】由正弦定理,结合,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.【题目详解】因为,

13、所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1). 1 (2). 【答案点睛】本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型.16、【答案解析】,求得的通项,进而求得,得通项公式,利用等比数列求和即可.【题目详解】由题为等差数列,,故答案为【答案点睛】本题考查求等差数列数列通项,等比数列求和,熟记等差等比性质,熟练运算是关键,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、有的把握认为顾客购物体验的满意度与性别有关;.【答案解析】由题得,根据数据判断出顾客购物体验的满意度与性别有关;获得了元购物券的人中男顾

14、客有人,记为,;女顾客有人,记为,从中随机抽取人,所有基本事件有个,其中仅有1人是女顾客的基本事件有个,进而求出获得纪念品的人中仅有人是女顾客的概率.【题目详解】解析:由题得所以,有的把握认为顾客购物体验的满意度与性别有关获得了元购物券的人中男顾客有人,记为,;女顾客有人,记为,从中随机抽取人,所有基本事件有:,共个其中仅有1人是女顾客的基本事件有:,共个所以获得纪念品的人中仅有人是女顾客的概率【答案点睛】本小题主要考查统计案例、卡方分布、概率等基本知识,考查概率统计基本思想以及抽象概括等能力和应用意识,属于中档题18、【答案解析】根据,可解得,设为曲线任一点,在矩阵对应的变换作用下得到点,则

15、点在曲线上,根据变换的定义写出相应的矩阵等式,再用表示出,代入曲线的方程中,即得.【题目详解】,即.,解得,.设为曲线任一点,则,又设在矩阵A变换作用得到点,则,即,所以即代入,得,所以曲线的方程为.【答案点睛】本题考查逆矩阵,矩阵与变换等,是基础题.19、(1)(2)【答案解析】(1)由直线可得椭圆右焦点的坐标为,由中点可得,且由斜率公式可得,由点在椭圆上,则,二者作差,进而代入整理可得,即可求解;(2)设直线,点到直线的距离为,则四边形的面积为,将代入椭圆方程,再利用弦长公式求得,利用点到直线距离求得,根据直线l与线段AB(不含端点)相交,可得,即,进而整理换元,由二次函数性质求解最值即可

16、.【题目详解】(1)直线与x轴交于点,所以椭圆右焦点的坐标为,故,因为线段AB的中点是,设,则,且,又,作差可得,则,得又,所以,因此椭圆的方程为.(2)由(1)联立,解得或,不妨令,易知直线l的斜率存在,设直线,代入,得,解得或,设,则,则,因为到直线的距离分别是,由于直线l与线段AB(不含端点)相交,所以,即,所以,四边形的面积,令,则,所以,当,即时,,因此四边形面积的最大值为.【答案点睛】本题考查求椭圆的标准方程,考查椭圆中的四边形面积问题,考查直线与椭圆的位置关系的应用,考查运算能力.20、(1); (2)证明见解析,.【答案解析】(1)根据离心率和的面积是得到方程组,计算得到答案.

17、(2)先排除斜率为0时的情况,设,联立方程组利用韦达定理得到,根据化简得到,代入直线方程得到答案.【题目详解】(1)由题意可得,解得,则椭圆的标准方程是.(2)当直线的斜率为0时,直线与直线关于轴对称,则直线与直线的斜率之和为零,与题设条件矛盾,故直线的斜率不为0.设,直线的方程为联立,整理得则,.因为直线与直线的斜率之和为1,所以,所以,将,代入上式,整理得.所以,即,则直线的方程为.故直线恒过定点.【答案点睛】本题考查了椭圆的标准方程,直线过定点问题,计算出是解题的关键,意在考查学生的计算能力和转化能力.21、()()证明见解析【答案解析】由与,得,的方程为设,则,由得 ()由,得, , 由、三式,消去,并求得,故(),当且仅当或时,取最小值,此时,故与共线22、(1)(2)当时,年利润最大【答案解析】(1)方法一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论