第16章 光的粒子性_第1页
第16章 光的粒子性_第2页
第16章 光的粒子性_第3页
第16章 光的粒子性_第4页
第16章 光的粒子性_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十六章 光的粒子(lz)性CHAPTER 16 PARTICLE PROPERTIES OF LIGHT19世纪末到20世纪初,人们在研究黑体辐射和光电效应(un din xio yng)时,发现不能用电磁理论解释这些物理现象。1900年普朗克提出能量量子化假设,很好地解释了黑体辐射现象,并导出了与实验相符合的普朗克黑体辐射公式,标志着量子力学的诞生。1905年爱因斯坦用光子学说圆满地解释了金属表面的光电效应,说明电磁辐射以微粒(量子)的形式发射和吸收,从而揭示了光的波粒二象性。 共三十九页1913年丹麦物理学家玻尔(NBohr)提出了氢原子的轨道结构和能级概念,为揭示原子的秘密迈出了有意义

2、的一步。由于当时还缺乏对微观粒子本性的认识,玻尔提出的理论是经典理论和量子理论的混合体,它不能反映微观粒子的运动规律,对于(duy)稍微复杂的物体,如多电子原子就不能作出正确地解释。 1922年1923年,康普顿在进行X射线经物质散射的研究中,进一步证实了光子(gungz)学说的正确性。1924年德布罗意在光的波粒二象性的启发下,提出了微观粒子的波粒二象性的假设,并预言了实物粒子也具有波动性。他的假设后来被电子衍射实验证实,完成了光子和实物粒子波粒二象性的统一。共三十九页第一节 热辐射11.1 Thermal Radiation一、热辐射现象(xinxing)(phenomena of the

3、rmal radiation)辐射能(energy of radiation)任何物体在任何温度下(T 0)向空间辐射各种波长的电磁波的能量(nngling)叫做辐射能。热辐射(thermal radiation)由热运动引起的辐射电磁波能量的现象称为热辐射,又称为温度辐射。 温度 辐射能量辐射中波长短的成分平衡热辐射(equilibrium thermal radiation)当物体辐射的能量等于在同一时间内所吸收的能量,物体的辐射达到热平衡,称为平衡热辐射共三十九页1.单色辐射(fsh)出射度(单色辐射本领 )一定(ydng)温度T,物体表面向外辐射各种波长的电磁波,单位时间内,物体单位表

4、面辐射的能量为dM与波长间隔d成正比dM =Md0 2 4 6 8 10 12钨丝和太阳的单色辐出度曲线21210468太阳可见光区 钨丝(5800K) 太阳(5800K)钨丝二、热辐射共三十九页M叫做物体(wt)的单色辐射辐出度,简称(jinchng)单色辐出度。又叫做单色辐射本领。单色辐出度表示物体表面辐射某一种波长的能量的能力,单色辐出度又可表示为M(T)或M( ,T)。它是 和T 的函数。在SI制中,单位: Js-1m-2m-1或Wm-2m-1。 共三十九页2. 辐射(fsh)出射度(总辐射本领 )(total emissivity )单位时间内,物体单位表面积辐射各种波长(bchng

5、)的能量的总和叫做辐射出射度,简称为辐出度,又叫做总辐射本领,用M(T)表示 ,在SI制中,单位:Js-1m-2或Wm-2 共三十九页3.吸收率(absorptance) 单位时间内,物体吸收的能量与入射的总能量的比值(bzh)称为该物体的吸收率。 用a (,T)表示,它表示物体(wt)在温度T 时对 的吸收能力 。4.黑体(black body)在任何温度下能完全吸收各种波长的辐射能的物体叫做黑体黑体的吸收率等于1,用a0 (,T)表示,a0 (,T)=1黑体是理想模型 共三十九页二 黑体(hit)模型(blackbody model)实验(shyn)表明: 辐射能力越强的物体,其吸收能力也

6、越强. 能完全吸收照射到它上面的各种频率的电磁辐射的物体称为黑体 .(黑体是理想模型)共三十九页A1: M1 (,T) , a1 (,T)A2: M2 (,T) , a2 (,T)A0: M0 (,T) , a0 (,T)=1经过一段时间后,所有的物体包括容器(rngq)在内都达到相同的温度T,建立了热平衡,此时,各个物体在单位时间内单位表面积辐射的能量刚好等于吸收的能量。 上式叫做(jiozu)基尔霍夫辐射定律。 它表示,在同一温度下,各种不同物体对同一波长的单色辐射度与吸收率的比值相等,并等于同一温度下的黑体对同一波长的单色辐射度,与物体的性质无关。 三、基尔霍夫辐射定律共三十九页结论(j

7、iln): 一个(y )物体对某些波长的吸收较强,则对这种波长的辐射也较强。如果物体不吸收某些波长,则它也不能辐射这种波长。 任何物体的辐射度总是比同温度、同波长的黑体的辐射度小 ,即M(,T) = a (,T) M0 (,T) 黑体能完全辐射各种波长的能量,辐射度最大,且只与温度有关,而与材料及表面状态无关共三十九页第二节、黑体辐射(fsh)定律 (law of blackbody radiation) 会聚透镜空腔小孔平行光管棱镜热电偶测量黑体辐射出射度实验(shyn)装置共三十九页图中每一条曲线表示在一定温度下,黑体的单色辐出度随波长分布的规律(gul)。每一条曲线下的面积等于黑体在一定

8、温度下的辐射辐出度,即得到黑体的单色辐射度随波长和温度T变化(binhu)的曲线,共三十九页1.斯特藩玻尔兹曼定律(dngl)(Stefan-Bolzmann Law) 黑体辐射(fsh)定律(Law of blackbody radiation)黑体的辐射出射度 M0(T)与黑体温度 T 的四次方成正比。 上式叫做斯特藩玻尔兹曼定律,T , E0( T ) 式中 = 5.6710-8 Wm-2 K-4,叫做斯特藩常数共三十九页2维思位移(wiy)定律(Wiens displacement law) 峰值(fn zh)波长:T, m,峰值波长与黑体的绝对温度成反比,即m T = b 上式称为维

9、恩位移定律 ,式中 b = 2.89810-3 mK, 斯蒂芬玻耳兹曼定律和维思位移定律是测量高温、遥感和红外追踪等的物理基础。与峰值相对应的波长,用m表示。共三十九页例如,从地球大气层外测得太阳光谱中的为465nm,根据维恩位移(wiy)定律可得到太阳表面温度为6232K。由于大气对太阳辐射的吸收,到达地面的太阳辐射光谱的峰值波长变为550nm左右。根据斯蒂芬-玻尔兹曼定律(dngl)得到太阳表面单位时间单位表面积辐射的总能量为共三十九页例: 辐射远红外线的人体表面可近似(jn s)看作一个黑体。假定人体表面面积平均为1.73 m2,表面温度为33=306 K,求人体辐射的峰值波长和功率。

10、解:根据(gnj)维思位移定律得 根据斯蒂芬玻尔兹曼定律,人体表面的总辐射度为 E0(T)= T 4= 5.6710-83064 = 497 Wm-2人体表面在单位时间内向外界辐射的总能量(即辐射总功率)为E总= E0S = 4981.73 860 W共三十九页人体(rnt)表面辐射总功率为 E总=5.6710-8(3064-2934)1.73 =137( W)人体(rnt)处于2023C之间(36 C或37 C乘以0.618)是最舒服的。当人体周围的环境温度为20 C时 , 即 TS = 20 = 293K 共三十九页第三节、普朗克量子(lingz)假设 (Planks quantum as

11、sumption)1.经典(jngdin)物理的困难 (difficulty of classical physics)M0 (,T) =?瑞利和金斯将分子中的能量按自由度均分原理应用于电磁辐射,得到的公式为长波波段与实验相符,但在短波区域趋于无穷大。维恩用辐射度随波长的分布类似于麦克斯韦的分子速率分布,提出的理论公式为短波符合很好,但在波长很长的长波方向不符合共三十九页由经典理论(lln)导出的M(,T)公式都与实验结果不符合!l 短波(dunb)区:维恩公式l 长波区:瑞利金斯公式共三十九页2.普朗克量子(lingz)假设(Planks quantum assumption)照经典理论 :

12、 辐射体是由无穷多个(du )带电谐振子组成 l 振子的能量取连续值1900年,普朗克提出了量子假设 谐振子所具有的能量不是任意值,而只能处于某些特定的状态。在这些状态中,它们的能量是最小能量 h 的整数倍,即h, 2h, 3h , , nh共三十九页经典 量子能量谐振子的能量(nngling)写成 E =nh 其中(qzhng)h = 6.626075510 -34 Js是普朗克常数。 h 叫做能量子(quantum) ,简称为量子n为正整数,称为量子数 共三十九页3.普朗克黑体辐射(fsh)公式(Planks formula of blackbody radiation)式中和T分别(fn

13、bi)为波长和温度,k为玻尔兹曼常数,e为自然对数的底,c为光速。上式称为普朗克黑体辐射公式,简称为普朗克公式在全波段与实验结果惊人符合!l 短波区:普朗克公式维恩公式l 长波区:普朗克公式 瑞利金斯公式共三十九页第四节 光电效应(un din xio yng) Photoelectric Effect一、光电效应(un din xio yng)的基本规律( rules of photoelectric effect) 金属及其化合物在电磁辐射照射下释放出电子的现象叫做光电效应(一)实验装置(experimental device)VA 光照射至金属表面, 电子从金属表面逸出, 称其为光电子.

14、共三十九页(二)实验(shyn)规律 截止频率(红限) 仅当 才发生光电效应,截止频率与材料有关与光强无关 . 几种(j zhn)纯金属的截止频率金属截止频率4.5455.508.06511.53铯 钠 锌 铱 铂 19.29共三十九页 电流饱和值 遏止电压 瞬时性 遏止电势差与入射光频率(pnl)具有线性关系. 当光照射到金属表面上时,几乎(jh)立即就有光电子逸出(光强)遏止电压 与光强无关共三十九页 按经典(jngdin)理论,电子逸出金属所需的能量,需要有一定的时间来积累,一直积累到足以使电子逸出金属表面为止.与实验结果不符 .(3)经典理论遇到(y do)的困难 红限问题 瞬时性问题

15、 按经典理论,无论何种频率的入射光,只要其强度足够大,就能使电子具有足够的能量逸出金属 .与实验结果不符. 共三十九页二.爱因斯坦光电效应(un din xio yng)方程(Einsteins photoelectric equation) 爱因斯坦认为,光并不象电磁波理论所想象的那样,分布在波阵面上,而是集中在微粒上,这种微粒仍保持着频率(或波长)的概念(ginin)。一束光是一束以光速运动的粒子流,这些粒子叫做光子。每个光子的能量 和光子的频率成正比, = h光的强度决定于单位时间通过单位面积的光子数目N。(1)爱因斯坦光子假设(Einstens photon assumption)I

16、= N h频率为的单色光的强度为共三十九页爱因斯坦指出,当金属受到光照射时,金属中的电子可以从光子(gungz)获得能量,而且一个电子一次只能吸收一个光子(gungz)的能量。只要光子(gungz)的能量超过电子脱离金属所需的逸出功,电子吸收光子(gungz)的能量后就可以离开金属,成为具有一定初动能的光电子。根据能量守恒定律称为(chn wi)爱因斯坦光电效应方程(2)爱因斯坦光电效应方程(Einsteins photoelectric equation)。光子具有“整体性”。一个光子只能“整个地”被电子吸收或放出。 光子的能量 h = 光电子的初动能 + 金属的逸出功A 共三十九页(3)用

17、爱因斯坦光子理论解释(jish)光电效应(interpret photoelectric effect from Einsteins photon theory)光电子的初动能只决定于照射光的频率,而与光的强度无关,要使电子脱离金属表面,光子的能量(nngling)不能小于A。能够产生光电效应的最低频率为 0 ,光电效应立即产生,不需要时间的积累。照射光的强度越大,入射的光子数目也越大,放出的光电子数目也越多,即光电流与入射光的强度成正比,这与实验结果符合。共三十九页爱因斯坦方程遏止电势差和入射光频率的关系共三十九页 例: 1.钙的逸出功是2.71eV,如果用波长为400nm的光照射(zhos

18、h)在钙上。试求(1)遏止电势差;(2)光电子的初动能; (me =9.1110-31 kg,e =1.6 10-19 C,h =6.626 10-31 Js)解: (1)根据(gnj)A = eU0,得到U0共三十九页(2)光电子的初动能(dngnng)= 6.33510-20 J= 0.39eV共三十九页2.光线(gungxin)照射金属表面,红线波长为0时,该金属的脱出功应为A. h/ 0; B. h/ 0; (h是普朗克常数(chngsh))C. h 0 /c; D. hc/ 0。 (c为光速) 答案:2.D;3D3.若用=0/2的光照射锂,它释放出的光电子的动能为 A. h/ 0; B. h/ 0; (h是普朗克常数)C. h 0 /c; D. hc/ 0。 (c为光速) 共三十九页三 光电效应在近代(jndi)技术中的应用光控继电器、自动控制、自动(zdng)计数、自动(zdng)报警等.光电倍增管共三十九页1.光子(gungz)的质量(The mass of photon) 质量(zhling)和能量的关系为E= mc2 光子的质量 m四.光子的质量和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论