




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 几何画板课件制作作者:马现岭摘要几何画板是一个适用于几何(平面几何,解析几何,射影几何,立体几何)、部分物理、天文教学的专业学科优秀平台软件,它能辅助教师在教学中使用现代化教育技术并进行教学试验,也可以帮助学生在实际操作中把握学科的内在实质,培养其观察能力,问题解决能力,并发展思维能力。它代表了当代专业工具平台类教学软件的发展方向。在对几何画板进行系统的学习之后,我利用有关知识制作了两大类综合的数学课件。主要包括:用动态效果展示圆锥曲线及截面的形成和圆锥曲线的画法。这两类课件在教学上都有很重要的应用。最新的普通中学数学课程标准中强调“教师应向学生展示平面截圆锥得到的椭圆的过程,使学生加深对圆
2、锥曲线的理解,有条件的学校应充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线。”这表明圆锥曲线的教学在以往的教学过程中存在着很大的困难,由于以往教育技术的落后,无法生动直观的进行讲解。现在有了这个课件,我们就能达到既生动又直观的教学效果。第二类利用几何画板实现了轨迹、函数图像的变换以及图像变换的动态演示,并由此法制作了几个有关函数图像变换的课件。第二类课件系统介绍了圆锥曲线的画法,为在教学中提高学生学习兴趣,开展对圆锥曲线的研究,提供了良好的方法和方便的途径。全文由三部分组成:第一部分:几何画板课件制作的选题原则。第二部分:详细介绍了我所选择制作的数学课件及其制作过程。第三部
3、分:学习及应用几何画板的体会。关键词:几何画板、标记向量、椭圆、圆锥曲线、圆锥截面、轨迹。AbstractTheGeometersSketchpadisanexcellentplatformforteachingofgeometry(planegeometry,analyticgeometry,projectiongeometryandsolidgeometry).Italsoappliestoteachingofpartialphysicsandastronomy.Thisplatformnotonlycanhelpteachersusethemoderneducationtechnolog
4、yinthecourseofteaching,butalsocanhelpstudentsgrasptheinwardnessofscience,andcultivatetheirabilityofobservation,solvingquestion,andprogressingtheirideation.Itrepresentsthedevelopingdirectionoftheeducativetoolsoftware.AfterIlearntheGeometersSketchpad,Ihavemadekindsofcomprehensivemathematicscoursewares
5、,mainlyincluding:Demonstratethedevelopmentofconecurve.Thesekindsofcoursewareshaveveryimportantapplicationonteaching.InThenewestordinarymiddleschoolmathematicscoursestandard,itisemphasizedthatteachershoulddemonstratetostudenttheplanesectionellipsethatconegets,makestudentdeepentheunderstandingforconec
6、urve,undercertainconditionschoolsshouldplaytheroleofmoderneducationaltechnologyfully,usingcomputertodemonstrationincomingofconecurvefromconebytheplane.Itshowsthattheteachingofconecurvehasgreatdifficultyinformerteachingcourse,justbecausethateducatingtechnologyfallbehindbefore,anditcannotbeactiveandvi
7、sualtoexplain.Now,herearethesecoursewares,wecanreachactiveandvisualteachingeffect.Thesecondkindofsidespreadoutproblemisconcernedwithinformerlesson,butthemethodtoproduceisfussy.ThebiggestadvantageofmylessonliesinthemethodthatIhaveusedaunificationtocarryout,sothatthetimetoproduceisshortenedgreatly,and
8、hasreachedverygooddemonstrationeffect.Thepapertextiscomposedofthreeparts:Inthefirstpart:IwritesomefundamentalaboutwhatkindsofproblemwecanmakethecoursewaresintheGeometersSketchpad.Inthesecondpart:ThemathematicscoursewaresanditsproducecoursethatIselecttomakeareintroducedindetail.Inthelastpart:Irelatet
9、heexperiencestudybyusingtheGeometersSketchpad.Keywords:TheGeometersSketchpad、markvector、ellipse、conecurve、conesection、trace.TheGeometersSketchpad是美国优秀的教育软件。由美国NicholasJackiw和ScottSteketee程序实现,StevenRasmussen领导的KeyCurriculum出版社出版。它的中文名是几何画板一21世纪的动态几何,以下简称几何画板。它小巧玲珑,操作简单,是数学学习的有力助手。它可以说是我们的数学实验室,因为它能够
10、有效地使数形结合,使我们在数学学习中既理解了数学结论,又得到了数学经验。众所周知数学是训练逻辑思维的,尤其几何。通过教师的辅导,我们在自己的记忆中形成套逻辑思维体系。那么怎样才能使我们更好地理解几何知识、掌握逻辑思维方法呢?一个方法是多看、多想,增加我们的学习经验,另一个方法就是寻找良好的辅助工具,帮助我们在动态的几何之中,去观察,探索。几何画板就是一个适用于几何(平面几何,解析几何,射影几何,立体几何)、部分物理、天文教学的专业学科优秀平台软件,它能辅助教师在教学中使用现代化教育技术并进行教学试验,也可以帮助学生在实际操作中把握学科的内在实质,培养其观察能力,问题解决能力,并发展思维能力。它
11、代表了当代专业工具平台类教学软件的发展方向。在对几何画板进行系统的学习之后,我利用有关知识制作了两大类综合的数学课件,主要包括:用动态效果展示圆锥曲线的形成和圆锥曲线的画法。这两类课件在教学上都有很重要的应用。这里我所选择的几何画板版本为4.04版,目前最高的版本为5.0英文版,此外还有3.03版、4.03版和4.06版.下面我就课件的选题、制作及使用几何画板的感受几方面来展开我的论文。第一部分几何画板的选题原则在数学教学过程中,不论是代数教学还是几何教学,遇到的最大困难就是:教师在教学过程重使用常规工具(如黑板,粉笔,圆规和直尺等)作图或是演示都有一定的局限性,而且无法达到动态地、任意地展示
12、的目的,更多的时候无法揭示事物变化过程中的规律。几何画板一21世纪的动态几何。顾名思义,几何画板就是一个可以很好的解决以上难题的辅助教学工具。几何画板在中学数学教学中有很多应用,不论在代数教学还是在几何教学中都显示出它的超凡魅力。例如,在代数学教学中,它对函数、极限、复数和不等式等的教学起到了很大的作用。在几何学教学中,平面、立体和解析几何更让几何画板大显身手。当然,并不是所有教学都要利用几何画板来完成,也并不是所有教学内容都适合利用几何画板达到最好的效果,这就要遵循几何画板的选题原则:第一:几何画板可以动态地演示图形的变化过程。例如:下面要展示的圆锥曲线和函数图象的变换的课件都体现了动态的特
13、点;第二:几何画板可以有效地使数形结合。例如:大量极值问题都可以通过几何画板来动态模拟。第三:几何画板可以精确画出函数图形并表现其全部情况。例如:函数教学中大量的绘图工作可以轻而易举地通过几何画板来完成。而且对于一类函数,几何画板可以通过改变系数及参数而达到表现其全部情况的目的。例如:三角函数中正弦函数y=Asin(3x+d)+d的图像可以通过调整A,d的值得到不同的精确图像。第四:几何画板最重要的是可以很好的表现图形的任意性。例如:在让学生掌握三角形重心,内心,外心等概念时,在以往的教学过程中只能在黑板上画出几个三角形作代表,不能很好地说明三角形的任意性,而利用几何画板就可以任意拖动三角形的
14、顶点以达到任意三角形的目的。总之,在所做课件中我们能够充分体现出几何画板的以上优势,并能够恰当的应用到教学实践中,为教学服务。这就可以称作是一个成功的课件设计。利用几何画板就是要充分利用它动态几何的特点,把在传统教学中比较难描述清楚的图形,用动态效果展现给学生,从而达到更好得教学效果。第二部分课件设计与制作第一类课件:圆锥曲线的形成选题:圆、椭圆、抛物线、双曲线这四种曲线可以看作不同的平面截圆锥面所得到的截线,故它们统称为圆锥曲线。在中学数学教学中,很难用实物教具演示圆锥曲线的形成过程。在学习之初,学生很难对圆锥曲线的形成有一个直观的认识。现利用几何画板模拟不同的平面截圆锥面的过程,动态演示不
15、同圆锥曲线及截面的形成,为高中数学圆锥曲线的学习作引入。这样设计使学生对抽象的圆锥曲线概念有一个更感性的认识,更便于学生理解圆锥曲线的实际意义。原理:圆锥面被一平面所截所得的曲线形有:圆、椭圆、抛物线、双曲线。制作过程:圆锥曲线的构造1构造能够控制截面作移动和倾斜变化的示意图1作小椭圆:利用同心圆法作椭圆,椭圆的长半轴为OA,短半轴为OB;(1)过O作OA的垂线,在垂线的上方任取一点H,作线段HO并隐藏垂线。用线段连接AH,分别在线段HO和AH上任取点C和点D,连接CD;(2)作截面:以点C为圆心,以小线段r为半径作圆。在上半圆上任取一点E,隐藏小圆。依次选定点E和点C并标记为向量,把点C按标
16、记向量平移得到点E,再依次选定点C和点D并标记为向量,把点E和E按标记向量平移得到点F和F。同时选定点E、F、F和E,用线段相连得截面EFFE,并涂上浅黄色,如图1A双曲线FO(a)圆锥截面的形成MN(b)注意:利用示意图控制截面作移动和倾斜变化1)拖动点A或点B,可以改变椭圆的大小;拖动点C或点D,可以使截面EFFE上下移动或上下倾斜;拖动点E,可以使截面左右倾斜或翻转。2构造圆锥面被截面所截形成圆锥截面曲线的过程做大椭圆:利用同心圆法作椭圆,椭圆的长半轴OA=2|OA|,短半轴OB=2|OB|,椭圆中心为O;作圆截面:依次选定点O和点H并标记为向量,把点O按标记向量平移两次得点H,使OH=
17、2|OH|。在椭圆上任取一点P,用线段连接OP依次选定点P和点H并标记为向量,把点H按标记向量平移得点P,用线段连接PP和AH;作P轨迹,同时选定点P和点P,执行作图/轨迹选项,求得一个与圆椭圆关于H对称的椭圆;作PP轨迹,再同时选定线段PP和点P,执行作图/轨迹选项,作出圆锥面,并用浅颜色表示。作截面:依次选定点O和C并标记为向量,把点O按标记向量平移两次得点C,使OC=2|OC|。过点C作平行于CD的直线a交HA于点D。在直线a上任取一点M,选定点M和C并标记为向量,把点C按标记向量平移得点M。过点M作EE平行线d,在d上任取一点N,选定点N和M并标记为向量,使点M按标记向量平移得点N。依
18、次选定点M和M并标记为向量,使点N,N按标记向量平移得点Q和Q。隐藏直线d,用线段连接N、N、Q、Q得截面NNQQ,并涂上浅黄色。作圆锥曲线:先求作截面NNQQ与棱HP的交点G。过点D作OA平行线交OH于O点。分别过点O和D作线段OP和FF的平行线b和c,并交于点R。作直线RC,求得RC与PP的交点G,即为截面与棱PP的交点。隐藏除直线a外的所有直线。求点G的轨迹,同时选定点G和点P,执行作图/轨迹选项,求得截面与锥面相交的圆锥曲线。根据截面不同位置,点G的轨迹可分别形成椭圆、抛物线、双曲线等,建立动画按钮控制截面的运动,改标签为“圆锥曲线”。用同样方法,可求得圆锥曲线在水平面上的投影,即过G
19、点作AO的垂线与PO交于点G,求点G的轨迹即是。在控制图上选取四个特殊点,此时所成圆锥曲线为双曲线、抛物线、椭圆、圆。分别构造到这几个点的移动按钮,并改名为“双曲线”“抛物线”、“椭圆”、“圆”如图2所示:第二类课件圆锥曲线的画法选题:圆锥曲线的画法虽然很多种,但归纳起来有以下五种:利用圆锥曲线的第二定义;利用圆锥曲线的第一定义;利用圆锥曲线的参数方程;利用圆锥曲线的极坐标方程;利用圆锥曲线的标准方程。此部分将将详细介绍以上方法,并将以动态的形式展示出来。一、由第二定义出发统一构造椭圆、抛物线和双曲线原理:到定点和定直线的距离之比等于定值m的点的轨迹:当0m1时,轨迹为双曲线。制作过程:1)如
20、图(3)所示:打开一个新画板,画一条竖直的直线j(定直线)和直线外一点A(定2)取点C,B作圆C1,交直线k于E。3)新建参数t,并标记比值,让点E以C为中心,按标记比进行缩放得E。4)取C,E作圆C2,取CA的中点G和点C作圆C3,交C2于F。5)用直线连接A,F交直线k于D,则AD/CD二CE/CE=1/1。6)选中C,D作轨迹,作点D关于直线l的对称点D,选中C,D作轨迹,最后隐藏不必要的对象。说明:(1)在圆Cl中,CB=CE,在圆C2中,CF=CE,在/BCF和/ADC中,因为ZCFB=ZACD=ZBAC,ZCBF=ZDAC(同弧上的圆周角相等),所以/BCF和/ADC为相似三角形。
21、则CB/CF=AD/CD=CE/CE=m=1/1,即定点A和定直线j距离之比等于定值m。(2)单击运动参数t按钮,比值m随之改变,这时可以动态地看到,当m小于1的值逐渐变为1时,轨迹由椭圆变成抛物线;当m大于1时,轨迹变成双曲线。二、由第一定义出发,构造椭圆和双曲线及抛物线原理:椭圆(双曲线)到定点的距离和定直线的距离之和(差)等于定值的点的轨迹抛物线到定点的距离和定直线的距离相等的点的轨迹。制作过程:椭圆(或双曲线)的制作:6644EFQ55-01-5510H4-2-H图4图5(1)作出平面直角坐标系,在x轴上任取两点作圆,标记圆心的点记为F,另一点隐藏。1再x轴上任取一点记为F(在圆内时并
22、且不与F重合时如图(4),轨迹为椭圆,在圆外时21如图(5),轨迹为双曲线),在圆上任取一点M。(2)过F、M作直线MN,交圆于另一点N。联结FM、FN,并且作它们的中垂线,与122直线MN相交于A、B。AB即为过焦点F的椭圆(或双曲线)的弦,FA、FB就是椭圆112(或双曲线)的焦半径。1)F(-,0(P0)是兀轴正向上的自由点,过F的动直线与y轴交于M,过M作FM的12丿垂线,交x轴于N,作与N关于M对称的点P。如图(6)2)选择点M、P,单击构造/轨迹,得点P的轨迹为抛物线,方程为y2=2px。FP是它的一条焦半径。2P说明:设过F的抛物线的焦点弦为PQ。设ZXFP=a则过抛物线焦点的弦
23、长为一,sin2a这样可以计算出FQ,以F为圆心,以算出的值FQ为半径作圆,可以找出点Q。从而作出抛物线的焦点弦。三、利用参数方程构造椭圆和双曲线作椭圆原理:利用椭圆参数方程x二acos0y二bsin0制作过程:1)如图(7)所示:开一个新画板,画线段AB,以A为圆心,AB为半径构造大圆C1。2)构造过点A与AB垂直的直线k,在直线k上取一点C,以A为圆心,以AC为半径构造小圆C2。3)在大圆C1上任取一点D,构造过点D和点A的直线l,直线l与小圆C2交于E。4)构造过E与AB平行的直线m。5)构造过D与AB垂直的直线n,并构造m与n的交点F。6)建立轨迹:同时选中点D和点F,单击构造/轨迹选
24、项,画板显示椭圆,拖动点A或点C,可以改变椭圆的形状。7)除了保留点A,B,C和椭圆轨迹外,隐藏其它对象。作双曲线原理:利用双曲线参数方程;x二asecfy=btgO制作过程:1)打开一个新画板,单击图表/定义坐标系,建立直角坐标系,标记原点为A,单位点为B。2)在x轴上取一点C,按顺序选取A,C,单击作图/以圆心和圆周上的点绘圆记为C1,同样,在y轴上取一点D,构造以A为圆心通过点D的圆C2。3)在C1上取一点E(自由点),构造过A,E的直线j。4)构造过E和AE垂直的直线k,并构造k与横轴的交点F。同样构造过F与x轴垂直的直线l.5)构造C2与x轴正向的交点G,并构造过G与x轴垂直的直线m
25、,交直线j于H,过H与x轴平行的直线o,交直线l于I点。6)构造轨迹:同时选中点E和点I,单击作图/轨迹。隐藏不必要的对象。说明:(1)选中I点,单击显示/追踪交点,再选中E点,单击编辑/操作类按钮/动画,并把标签改为“双曲线”隐藏除I点和坐标轴的其它对象。单击“双曲线”按钮可动态演示双曲线的形成。如图(8)所示:图8四、利用在极坐标系下,圆锥曲线的统一方程卩=ep一1-ecosO原理:在极坐标系中,椭圆、抛物线、和双曲线的统方程为p=ep1-ecosO当0e1时,方程代表椭圆;当e=1时,方程代表抛物线;当el时,方程代表双曲线。制作过程:1)打开一个新画板,单击编辑/参数选项,在打开的“参
26、数选项”对话框中单击“单位”,把角度选为弧度并单击“确定”。2)单击图表/定义坐标系,再单击图表/隐藏网格,标记原点为O单位点为B。如图(9)所示:|运动点E得不同的圆锥曲线e=2.28mZBOG=0.18冗弧度1-e-cos(mZBOG)10FO=2.14厘米P=2.14厘米CE=2.28CD3)画射线CD,在CD上画一点E,在极轴的反向延长线上画一点F。4)度量线段CE、CD、FO的长,过F作极轴的垂线k.设PO=p。5)计算CE/CD,设CE/CD=e。隐藏CD、CE的度量值。6)画单位圆,在单位圆上画一点G。先选择点B、G、单位圆,单击构造/圆上的弧,顺序选取点B、0、G,单击度量/角
27、度,得ZBOG的大小,设ZBOG=0。用线段连结0、G,选中弧BG并单击构造/弧内部/扇形内部,扇形即被着色。7)计算p=ep1-ecos08)先后选择计算值p=EP-1-ecos0,角度值0(注意顺序),并单击图表/绘制点,得到的点记为H。同时选择G、H,单击构造/轨迹,得到方程p=EP的曲线。1-ecos09)选中点E,单击编辑/操作类按钮/动画,弹出如图(10)所示:对话框。修改标签为“运动点E得不同的圆锥曲线”说明:1.拖动F可以改变参数p的大小。却计宜帘助(M)I取稍|:111女图11单击“运动点E得不同的圆锥曲线”E点在射线CD上运动,当E点在CD之间运动时得椭圆,在D点时得抛物线
28、,在D右侧得双曲线。五、利用椭圆、抛物线和双曲线的标准方程作曲线这里只介绍椭圆的作法,抛物线和双曲线同样可以作出。椭圆的制作原理:由椭圆的标准方程兰+21=1可得y=土brO2二2,这样我们先作出y=勺图象,然后再作出a2b2aay=-a2-x2的图象,最后即得椭圆曲线。a制作过程:1)打开一个新画板单击图表/定义坐标系,建立直角坐标系。标记原点为A。如图(12)所示2=1.12a=2.78厘米b=1.40厘米CE=1.67b)图132)在x轴上取一点C,在y轴上取一点D,然后度量A、C两点的距离。选中A、C。单3)击度量/距离,同样度量A,D两点的距离。分别改标签为a、b。4)在x轴上取一点
29、E,并度量其横坐标X。E5)单击度量/计算,输入如图(11)所示:计算出I:a2-x2的值,选择x,计算值a、EEa2-x2(注意顺序)单击图表/绘制(x,y),得点F。a上E6)作轨迹:选中E、F,单击作图/轨迹,作出上半个椭圆。7)双击x轴,这样把x轴标记为镜面,选中点F,单击变换/反射,得到的点为F。然后选中E、F单击作图/轨迹,作出下半个椭圆。8)选中上半个椭圆,单击编辑/属性,得如图(13)所示对话框,并把采样数量改为5000,然后单击“确定”同样修改下半圆的属性。这样可以使椭圆的图像比较平滑。第三部分学习几何画板的体会计算机在数学教学中有着它的独特作用,在辅助学生认知的功能要胜过以
30、往的任何技术手段。在帮助学生系统地复习、运用知识方面也有着比传统教学更先进的模式,特别它的表述的方式很灵活,可以以文字、图形、动画、电影、图表等多种方式出现。再加入良好的教学软件辅助更显示出计算机辅助教学的强大优势。所以,当代教师应该掌握计算机辅助教学,并达到对一两种软件的熟练使用。几何画板作为优秀的教学软件之一,是一个通用于数学,物理,天文的教学平台。其丰富的功能使用户可以随心所欲的编写所需的教学课件。该软件提供了充分的技术手段帮助用户实现其教学思想。用户只要熟悉它的简单使用技巧就可以自行设计和编写应用范例,无需学习任何编程语言。所做的课件所体现的并不是设计者的计算机软件应用水平,而是他具有的数学教学思想和实际教学水平。几何画板不仅能够帮助教师扩展在传统教学中的能力,而且还为新的教学方法提供了可能。在新的教学方法中,强调学生的主体参与,学生课堂的主体,通过学生的参与来帮助学生更好
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省蚌埠市禹会区北京师范大学蚌埠附属学校2025届高考化学四模试卷含解析
- 山东省青岛市黄岛区致远中学2025年高三第三次测评化学试卷含解析
- 家政服务技能培训
- 幼儿园中班冬至主题教育
- 幻听常见护理诊断及措施
- 急性呼吸衰竭护理查房
- 2025年金刚石触媒材料合作协议书
- 大兴机场工程项目管理
- 2025年医用激光仪器设备项目建议书
- 2025届安徽马鞍山市高考仿真卷化学试卷含解析
- 医疗机构手术分级管理办法
- 防护服穿脱流程培训课件
- 六年级下册美术教案-第9课 纸塑丨浙美版
- DB11_T1832.3-2021 建筑工程施工工艺规程第3部分:混凝土结构工程
- 国家开放大学《社会心理适应》形考任务1-7参考答案
- 2022年系统架构设计师(高级)软件水平考试题库
- 《淹溺急救》PPT课件(2022版)
- EPC项目管理之安全文明施工责任制度
- 第二节模糊综合评价法
- 《雷锋叔叔_你在哪里》说课稿55481
- 战略预算管理基本原理培训ppt课件
评论
0/150
提交评论