




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学第二学期第二十二章四边形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题是真命题的是()A有一个角为直角的四边形是矩形B对角线互相垂直的四边形是菱形C一组对边平行,另一组对边相等
2、的四边形是平行四边形D有一组邻边相等的矩形是正方形2、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:1D3:2:3:23、如图,在中,对角线AC,BD相交于点O,且ACBC,的面积为48,OA3,则BC的长为( )A6B8C12D134、如图,在菱形ABCD中,AB5,AC8,过点B作BECD于点E,则BE的长为( )ABC6D5、若一个多边形的外角和与它的内角和相等,则这个多边形是( )A三角形B四边形C五边形D六边形6、下列正多边形中,能够铺满地面的是()A正方形B正五边形C正七边形D正九边形7、已知正多边形的一个外角等于
3、45,则该正多边形的内角和为()A135B360C1080D14408、如图,在六边形中,若,则( )A180B240C270D3609、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC10、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个五边形共有_条对角线2、四边形的外角度数
4、之比为1:2:3:4,则它最大的内角度数为_3、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB6,DAC60,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为 _4、如图,已知在矩形中,将沿对角线AC翻折,点B落在点E处,连接,则的长为_5、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _三、解答题(5小题,每小题10分,共计50分)1、在如图所示的43网格中,每个小正方形的边长均为1,正方形顶点叫格点,连接两个网格格点的线段叫网格
5、线段点A固定在格点上(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a ,b , ;(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为 , 2、如图,在平行四边形中,点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒当点运动到点时,点,同时停止运动连接,设运动时间为秒(1)当为何值时,四边形为平行四边形?(2)设四边形的面积为,求与之间的函数关系式(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由
6、3、如图,四边形ABCD中,点E是AD的中点,连接BE,将ABE沿BE折叠后得到GBE,且点G在四边形ABCD内部,延长BG交DC于点F,连接EF(1)求证:四边形ABCD是矩形;(2)求证:;(3)若点,求DF的长4、已知:在中,平分延长到,使,为中点,连接,过作的平行线与延长线交于点,连接,交于点(1)补全图形;(2)用等式表示线段,与的数量关系并证明;(3)若,用等式表示线段与的数量关系并证明5、如图,ABCD中,点E、F分别在AB、CD上,且BEDF求证:AFEC-参考答案-一、单选题1、D【分析】根据矩形的判定、菱形的判定、平行四边形的判定及正方形的判定,结合选项进行判断即可【详解】
7、A.有三个角是直角的四边形是矩形,故本选项为假命题;B.两条对角线互相垂直的平行四边形是菱形,故本选项为假命题;C.一组对边平行且相等的四边形是平行四边形,故本选项为假命题;D.有一组邻边相等的矩形是正方形,故本选项为真命题故选:D【点睛】考查矩形的判定、菱形的判定、平行四边形的判定及正方形的判定,熟练掌握它们的判定方法是解题的关键2、D【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,
8、应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法3、B【分析】由平行四边形对角线互相平分得到AC的值,由ACBC,可得,代入即可求出BC边长.【详解】解:在中,对角线AC,BD相交于点O,OA=OC,OA=3,AC=2OA=6,ACBC,BC=8.故选:B【点睛】此题考查平行四边形的性质和平行四边形的面积,掌握平行四边形对角线互相平分的性质是解答此题的关键.4、B【分析】根据菱形的性质求得的长,进而根据菱形的面积等于,即可求得的长【详解】解:如图,设的交点为,四边形是菱形,在中,菱形的面积等于故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得的长是解题的关
9、键5、B【分析】任意多边形的外角和为360,然后利用多边形的内角和公式计算即可【详解】解:设多边形的边数为n根据题意得:(n2)180360,解得:n4故选:B【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360和多边形的内角和公式是解题的关键6、A【分析】根据使用给定的某种正多边形,当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就可以铺满地面,即可求解【详解】解:A、正方形的内角和为 ,正方形的每个内角为90,而 ,正方形能够铺满地面,故本选项符合题意;B、正五边形的每个内角为 ,不能被360整除,所以不能够铺满地面,故本选项不符合题意;C、正七边形的每个
10、内角为 ,不能被360整除,所以不能够铺满地面,故本选项不符合题意;D、正九边形的每个内角为 ,不能被360整除,所以不能够铺满地面,故本选项不符合题意;故选:A【点睛】本题主要考查了用正多边形铺设地面,熟练掌握给定的某种正多边形,当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就可以铺满地面是解题的关键7、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多
11、边形的边数是解本题的关键.8、C【分析】根据多边形外角和求解即可【详解】解: , ,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键9、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90,正确,故A不符合题意;当ABCD是菱形时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACBD,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方
12、形的性质是解本题的关键.10、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形二、填空题1、5【分析】由n边形的对角线有: 条,再把代入计算即可得【详解】解:边形共有条对角线,五边形共有条对角线故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键2、144度【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系
13、分别求出它们的内角,即可得到答案【详解】解:四边形的四个外角的度数之比为1:2:3:4,四个外角的度数分别为:360;360;360;360;它最大的内角度数为:故答案为:144【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360,从而进行计算3、【分析】根据DAC60,ODOA,得出OAD为等边三角形,再由DFE为等边三角形,得DOADEF60,再利用角的等量代换,即可得出结论正确;连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;延长OE至,使OD,连接,通过DAFDOE,DOE60,可分析得出点
14、F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,从而得出结论正确;【详解】解:设与的交点为如图所示:DAC60,ODOA,OAD为等边三角形,DOADAOADO =60,DFE为等边三角形,DEF60,DOADEF60,故结论正确;如图,连接OE,在DAF和DOE中,DAFDOE(SAS),DOEDAF60,COD180AOD120,COECODDOE1206060,COEDOE,在ODE和OCE中,ODEOCE(SAS),EDEC,OCEODE,故结论正确;ODEADF,ADFOCE,即ADFECF,故结论正确;如图,延长OE至,使OD,连接,DAFDOE,DOE60,点F在线段A
15、O上从点A至点O运动时,点E从点O沿线段运动到,设,则在中,即解得:ODAD,点E运动的路程是,故结论正确;故答案为:【点睛】本题主要考查了几何综合,其中涉及到了等边三角形判定及性质,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键4、【分析】过点E作EFAD于点F,先证明CG=AG,再利用勾股定理列方程,求出AG的值,结合三角形的面积法和勾股定理,即可求解【详解】解:如图所示:过点E作EFAD于点F,有折叠的性质可知:ACB=ACE,ADBC,ACB=CAD,CAD=ACE,CG=AG,设CG=x,则DG
16、=8-x,在中,x=5,AG=5,在中,EG=,EFAD,AEG=90,在中,、DF=8-=,在中,故答案是:【点睛】本题主要考查矩形的性质,折叠的性质,勾股定理,等腰三角形的判定定理,添加辅助线构造直角三角形,是解题的关键5、6【分析】根据多边形内角和公式及多边形外角和可直接进行求解【详解】解:由题意得:,解得:,该多边形的边数为6;故答案为6【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键三、解答题1、(1),2,;(2)4或5【分析】(1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;(2)根据要求周长边长为的菱形即可【详解】解:(1)由题意
17、得:a=,b=2,;故答案为:,2,;(2)如图1,2中,菱形ABCD即为所求菱形ABCD的面积为=42=4或菱形ABCD的面积=5,故答案为:4或5【点睛】本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题2、(1);(2)yS四边形ABPQ2t32(0t8);(3)t8,;(4)当t4或或时,为等腰三角形,理由见解析【分析】(1)利用平行四边形的对边相等AQBP建立方程求解即可;(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;(3)利用面积关系求出t,即可求出DQ,进而判断出DQPQ,即可得出结论;(4)分三种情况
18、,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论【详解】解:(1)在平行四边形中,由运动知,AQ16t,BP2t,四边形ABPQ为平行四边形,AQBP,16t2tt,即:ts时,四边形ABPQ是平行四边形;(2)过点A作AEBC于E,如图,在RtABE中,B30,AB8,AE4,由运动知,BP2t,DQt,四边形ABCD是平行四边形,ADBC16,AQ16t,yS四边形ABPQ(BPAQ)AE(2t16t)42t32(0t8);(3)由(2)知,AE4,BC16,S四边形ABCD16464,由(2)知,yS四边形ABPQ2t32(0t8),四边形ABPQ的面积是四边形ABCD的面积的四
19、分之三2t3264,t8;如图,当t8时,点P和点C重合,DQ8,CDAB8,DPDQ,DQCDPQ,DB30,DQP75;(4)当ABBP时,BP8,即2t8,t4;当APBP时,如图,B30,过P作PM垂直于AB,垂足为点M,BM4,解得:BP,2t,t当ABAP时,同(2)的方法得,BP,2t,t所以,当t4或 或时,ABP为等腰三角形【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQBP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题3、(1)证明见解析;(2
20、)证明见解析;(3)【分析】(1)利用平行线的性质可得C=90,再根据三个角是直角的四边形是矩形即可判定;(2)根据折叠的性质和中点的定义得出EG=ED,再用HL定理证明RtEGFRtEDF即可;(3)利用DF分别表示BF和FC,再在RtBCF中利用勾股定理求解即可(1)证明:,D+C=180,四边形ABCD为矩形;(2)证明:将ABE沿BE折叠后得到GBE,ABEGBE,BGE=A,AE=GE,A=D=90,EGF=D=90,点E是AD的中点,EA=ED,EG=ED,在RtEGF和RtEDF中,RtEGFRtEDF(HL);(3)解:四边形ABCD为矩形,ABEGBE,C=90,BG=CD=AB=6,;,在RtBCF中,根据勾股定理,即,解得即【点睛】本题考查矩形的性质和判定,全等三角形的判定定理,折叠的性质,勾股定理等(1)掌握矩形的判定定理是解题关键;(2)能结合重点和折叠的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中华安全教育试题及答案
- 2025年电工三级(高级工)理论100题及答案
- 云南省通海县三中2025届物理高二下期末学业水平测试模拟试题含解析
- 银川市第三中学2024-2025学年高二下物理期末统考试题含解析
- 宿州市重点中学2025年数学高二下期末考试模拟试题含解析
- 云南省江川第二中学2025年高二物理第二学期期末统考试题含解析
- 云南省宣威市第十二中学2025年高二化学第二学期期末学业质量监测试题含解析
- 重庆市西北狼联盟2024-2025学年高二物理第二学期期末综合测试试题含解析
- 高端住宅小区安保人员服务合同
- 体育场馆场地租赁预付保证金合同
- 《环境保护产品技术要求 工业有机废气催化净化装置》HJT 389-2007
- 微环境调控髓核软骨分化
- 2024年全国统一高考数学试卷(新高考Ⅱ)含答案
- 初二地理会考模拟试卷(七)
- 学生课业负担监测、公告、举报、问责制度
- 2024北京大兴区高一(下)期末数学试题及答案
- PLCS7-300课后习题答案
- 肘管综合症患者护理查房
- 2023年演出经纪人考试历年真题附答案(巩固)
- 媒介与性别文化传播智慧树知到期末考试答案章节答案2024年浙江工业大学
- 工作场所职业病危害作业分级第1部分:生产性粉尘
评论
0/150
提交评论