版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、九年级数学下册第二十九章直线与圆的位置关系同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定2、在ABC中,点O为AB中点以点C为圆心,C
2、O长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定3、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接若,则的度数为( )ABCD4、已知O的半径为3,若PO=2,则点P与O的位置关系是( )A点P在O内B点P在O上C点P在O外D无法判断5、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为()A12+2B4+C24+2D12+146、如图,是等边三角形的外接圆,若的半径为2,则的面积为( )ABCD7、一个正多边形的半径与边长相等,则这个正多边形的边数为()A4B5C6D88、如图,AB,BC,CD分别与O
3、相切于E、F、G三点,且ABCD,BO3,CO4,则OF的长为()A5BCD9、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A6,3B6,3C3,6D6,310、如图,AB为O的切线,切点为A,连接AO、BO,BO与O交于点C,延长BO与O交于点D,连接AD若ABO36,则ADC的度数为( )A54B36C32D27第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知正方形ABCD的边长为4,点E在BC上,DE为以AB为直径的半圆的切线,切点为F,连结CF,则ED的长为_,CF的长为_2、如图,在中,以点为圆心,2为半径的与相切于点,交于点,交
4、于点,点是上一点,且,则图中阴影部分的面积是_3、O的半径为3cm,如果圆心O到直线l的距离为d,且d=5cm,那么O和直线l的位置关系是_4、如图,O的半径为5cm,正六边形ABCDEF内接于O,则图中阴影部分的面积为 _5、如图,在矩形中,是边上的点,经过,三点的与相切于点若,则的半径是_三、解答题(5小题,每小题10分,共计50分)1、如图,ABC内接于O,AB是O的直径,直线l与O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E(1)求证:直线DC是O的切线;(2)若BC=4,CAB=30,求图中阴影部分的面积(结果保留)2、如图,在平面直角坐标系xOy中,点A
5、与点B的坐标分别是(1,0),(7,0)(1)对于坐标平面内的一点P,给出如下定义:如果APB45,那么称点P为线段AB的“完美点”设A、B、P三点所在圆的圆心为C,则点C的坐标是 ,C的半径是 ;y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;(2)若点P在y轴负半轴上运动,则当APB的度数最大时,点P的坐标为 3、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC(1)求证:AC为的切线:(2)若半径为2,求阴影部分的面积4、【提出问题】如图,已知直线l与O相离,在O上找
6、一点M,使点M到直线l的距离最短(1)小明给出下列解答,请你补全小明的解答小明的解答过点O作ONl,垂足为N,ON与O的交点M即为所求,此时线段MN最短理由:不妨在O上另外任取一点P,过点P作PQl,垂足为Q,连接OP,OQOP+PQOQ,OQON, 又ONOM+MN;OP+PQOM+MN又 , (2)【操作实践】如图,已知直线l和直线外一点A,线段MN的长度为1请用直尺和圆规作出满足条件的某一个O,使O经过点A,且O上的点到直线l的距离的最小值为1(不写作法,保留作图痕迹并用水笔加黑描粗)(3)【应用尝试】如图,在RtABC中,C90,B30,AB8,O经过点A,且O上的点到直线BC的距离的
7、最小值为2,距离最小值为2时所对应的O上的点记为点P,若点P在ABC的内部(不包括边界),则O的半径r的取值范围是 5、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线(1)求证:AD是O的切线(2)若O的半径为4,求平行四边形OAEC的面积-参考答案-一、单选题1、C【解析】【分析】根据O的半径r=4,且点A到圆心O的距离d=5知dr,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离O
8、P=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr2、B【解析】【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键3、B【解析】【分析】如图:连接OB,由切线的性质可得OBA=90,再根据直角三角形两锐角互余求得COB,然后再根据圆周角定理解答即可【详解】解:如图:连接OB,是的切线,B为切点OBA=90COB=90-42=48=COB=24故
9、选B【点睛】本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键4、A【解析】【分析】已知圆O的半径为r,点P到圆心O的距离是d,当rd时,点P在O内,当r=d时,点P在O上,当rd时,点P在O外,根据以上内容判断即可【详解】O的半径为3,若PO2,23,点P与O的位置关系是点P在O内,故选:A【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,当rd时,点P在O内,当r=d时,点P在O上,当rd时,点P在O外5、A【解析】【分析】正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果【详解】解:正
10、三角形的面积为:,三个小半圆的面积为:,中间大圆的面积为:,所以阴影部分的面积为:,故选:【点睛】本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键6、D【解析】【分析】过点O作OHBC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可【详解】解:过点O作OHBC于点H,连接AO,BO,ABC是等边三角形,ABC=60,O为三角形外心,OAH=30,OH=OB=1,BH=,AH=-AO+OH=2+1=3 故选:D【点睛】本题考查了等边三角形的性质、含30角的直角三角形的性质,熟练掌握等边三角形的性
11、质,并能进行推理计算是解决问题的关键7、C【解析】【分析】如图(见解析),先根据等边三角形的判定与性质可得,再根据正多边形的中心角与边数的关系即可得【详解】解:如图,由题意得:,是等边三角形,则这个正多边形的边数为,故选:C【点睛】本题考查了正多边形,熟练掌握正多边形的中心角与边数的关系是解题关键8、D【解析】【分析】连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得【详解】解:连接OF,OE,OG,AB、BC、CD分别与相切,且,OB平分,OC平分,故选:D【点睛】题目主要考查圆的切线性
12、质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键9、B【解析】【分析】如图1,O是正六边形的外接圆,连接OA,OB,求出AOB=60,即可证明OAB是等边三角形,得到OA=AB=6;如图2,O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1MAB于M,先求出AO1B60,然后根据等边三角形的性质和勾股定理求解即可【详解】解:(1)如图1,O是正六边形的外接圆,连接OA,OB,六边形ABCDEF是正六边形,AOB=3606=60,OA=OB,OAB是等边三角形,OA=AB=6;(2)如图2,O1是正六边形的内切圆,连接O1A,O1B,
13、过点O1作O1MAB于M,六边形ABCDEF是正六边形,AO1B60,O1A= O1B,O1AB是等边三角形,O1A= AB=6,O1MAB,O1MA90,AMBM,AB6,AMBM,O1M故选B【点睛】本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键10、D【解析】【分析】由切线的性质得出OAB=90,由直角三角形的性质得出AOB=90-ABO=54,由等腰三角形的性质得出ADC=OAD,再由三角形的外角性质即可得出答案【详解】解:AB为O的切线,OAB90,ABO36,AOB90ABO54,OAOD,ADCOAD,AOBADC+OAD,ADC
14、AOB27;故选:D【点睛】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键二、填空题1、 5 【解析】【分析】先证明BE、AD也是半圆的切线,即可根据切线长定理得到EB=EF、DA=DF,再在DCE中即可求出DE的值;过F作FGDC于G,根据相似求出FG、CG的长,最后根据勾股定理即可求出CF的值【详解】正方形ABCDCD=AD=BC=4,CEAB,DAAB以AB为直径的半圆BE、AD也是半圆的切线DE为以AB为直径的半圆的切线,EB=EF、DA=DF=4EC=BC-BE=4-EF,DE=DF+EF=4+EF在Rt
15、DCE中,解得DE=DF+EF=4+EF=5过F作FGDC于G,如图解得在RtDCE中,故答案为:5,【点睛】本题考查切割线定理、相似三角形的性质与判定,解题的关键是能看出有多条切线2、【解析】【分析】连接AD,由圆周角定理可求出,即可利用扇形面积公式求出由切线的性质可知,即可利用三角形面积公式求出最后根据,即可求出结果【详解】如图,连接AD,BC是O切线,且切点为D,故答案为:【点睛】本题考查圆周角定理,切线的性质,扇形的面积公式连接常用的辅助线是解答本题的关键3、相离【解析】【分析】根据直线和圆的位置关系的判定方法判断即可【详解】解:O的半径为3cm,圆心O到直线l的距离为d5cm,dr,
16、直线l与O的位置关系是相离,故答案为:相离【点睛】本题考查了直线和圆的位置关系的应用,注意:已知O的半径为r,如果圆心O到直线l的距离是d,当dr时,直线和圆相离,当dr时,直线和圆相切,当dr时,直线和圆相交4、【解析】【分析】根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可【详解】如图,连接BO,OC,OA,由题意得:BOC,AOB都是等边三角形,AOBOBC60,OABC,故答案为:【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出5、#【解析】【分析】连接EO,并延长交圆于点G,在RtDEF中求出EF的值,再证明DE
17、FFGE,然后根据相似三角形的性质即可求解【详解】解:连接EO,并延长交圆于点G,四边形是矩形,CD=,D=90,与相切于点,OECD,再结合矩形的性质可得:DE=CE=3,EF=与相切于点,GED=90GE是直径,GFE=90,DEF+GEF=90,EGF+GEF=90,DEF=EGFD=GFE=90,DEFFGE,GE=,的半径是,故答案为;【点睛】本题考查了矩形的性质,勾股定理,切线的性质,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键三、解答题1、 (1)见解析(2)【解析】【分析】(1)连接OC,由题意得,根据等边对等角得,即可得,则,即可得;(2)根据三
18、角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得(1)证明:如图所示,连接OC,AB是的直径,直线l与相切于点A,直线DC是的切线(2)解:,又,是等边三角形,在中,阴影部分的面积=【点睛】本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点2、 (1)(4,3)或C(4,3),(2)【解析】【分析】(1)在x轴的上方,作以AB为斜边的等腰直角三角形ACB,易知A,B,P三点在C上,圆心C的坐标为(4,3),半径为3,根据对称性可
19、知点C(4,3)也满足条件;当圆心为C(4,3)时,过点C作CDy轴于D,则D(0,3),CD=4,根据C的半径得C与y轴相交,设交点为,此时,在y轴的正半轴上,连接、CA,则=CA =r=3,得,即可得;(2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于E于点N,连接NA,则APB=ANB,ANB是MAN的外角,ANBAMB,即APBAMB,过点E作EFx轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得(1)如图1中,在x轴的上方
20、,作以AB为斜边的等腰直角三角形ACB,易知A,B,P三点在C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,3)也满足条件,故答案是:(4,3)或C(4,3),y轴的正半轴上存在线段AB的“等角点”。如图2所示,当圆心为C(4,3)时,过点C作CDy轴于D,则D(0,3),CD=4,C的半径,C与y轴相交,设交点为,此时,在y轴的正半轴上,连接、CA,则=CA =r=3,CDy轴,CD=4,;当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;故答案为:,(2)当过点A,B的圆与y轴负半轴相切于点P时,APB最大,理由如下:如果点P在y轴的负半轴上,设此时圆心为E,则
21、E在第四象限,如图3所示,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于E于点N,连接NA,点P,点N在E上,APB=ANB,ANB是MAN的外角,ANBAMB,即APBAMB,此时,过点E作EFx轴于F,连接EA,EP,则AF=AB=3,OF=4,E与y轴相切于点P,则EPy轴,四边形OPEF是矩形,OP=EF,PE=OF=4,E的半径为4,即EA=4,在RtAEF中,即 故答案为:【点睛】本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点3、 (1)见解析(2)【解析】【分析】(1)根据切线的判定方法,证出即可;(2)由勾股定理得,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可(1)解:如图,连接OB,AB是的切线,即,BC是弦,在和中,即,AC是的切线;(2)解:在中,由勾股定理得,在中,【点睛】本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解4、 (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医用高频仪器设备项目提案报告模范
- 生命小学作文15篇
- 2024-2025学年许昌市魏都区三年级数学第一学期期末综合测试试题含解析
- 2024-2025学年新源县三上数学期末检测试题含解析
- 2025年水用电磁阀项目立项申请报告模范
- 个人辞职报告19篇
- 个人年终总结合集15篇
- 2024年校园护卫人员标准聘用合同模板版B版
- 员工离职证明书(15篇)
- 2023行政主管年终工作报告五篇
- 项痹中医护理课件
- 新版查对制度专项检查表(涵盖患者身份识别、临床诊疗行为、设备设施运行和医疗环境安全等相关方面)
- 成人有创机械通气气道内吸引技术操作解读护理课件
- 贵州省黔南布依族苗族自治州2023-2024学年九年级上学期期末数学试题(含答案)
- 基坑开挖降水课件
- (小学)语文教师书写《写字教学讲座》教育教研讲座教学培训课件
- 智能胶囊内镜导航算法研究
- 《新疆大学版学术期刊目录》(人文社科)
- 2024年初级社会工作者《社会工作综合能力》模拟试卷一
- 重庆市2023-2024学年高一上学期期末联合检测物理试卷(含答案解析)
- 糖尿病性视网膜病变汇报演示课件
评论
0/150
提交评论