天津市和平区2022年高三冲刺模拟数学试卷含解析_第1页
天津市和平区2022年高三冲刺模拟数学试卷含解析_第2页
天津市和平区2022年高三冲刺模拟数学试卷含解析_第3页
天津市和平区2022年高三冲刺模拟数学试卷含解析_第4页
天津市和平区2022年高三冲刺模拟数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数()的最小值为0,则( )ABCD2在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于( )ABCD3下图为一个正四面体的侧面展

2、开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为( )ABCD4过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则( )ABCD5某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m3)的频率分布直方图如图所示,则小区内用水量超过15 m3的住户的户数为( )A10B50C60D1406正项等比数列中,且与的等差中项为4,则的公比是 ( )A1B2CD7中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是( )A2或B2或C或D或8某几何体的三视图如图所示(单位:c

3、m),则该几何体的表面积是( )ABCD9已知数列 中, ,若对于任意的,不等式恒成立,则实数的取值范围为( )ABCD10设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为( )ABCD11若直线l不平行于平面,且l,则( )A内所有直线与l异面B内只存在有限条直线与l共面C内存在唯一的直线与l平行D内存在无数条直线与l相交12已知,分别是三个内角,的对边,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,某地一天从时的温度变化曲线近似

4、满足函数,则这段曲线的函数解析式为_14我国古代数学名著九章算术对立体几何有深入的研究,从其中一些数学用语可见,譬如“憋臑”意指四个面都是直角三角形的三棱锥.某“憋臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知几何体高为,则该几何体外接球的表面积为_15双曲线的焦距为_,渐近线方程为_16已知,记,则的展开式中各项系数和为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程与曲线的直角坐标方程;(2)若射线与和分别交于

5、点,求18(12分)已知函数.(1)求函数的最小正周期以及单调递增区间;(2)已知,若,求的面积.19(12分)在平面直角坐标系中,已知椭圆:()的左、右焦点分别为、,且点、与椭圆的上顶点构成边长为2的等边三角形(1)求椭圆的方程;(2)已知直线与椭圆相切于点,且分别与直线和直线相交于点、试判断是否为定值,并说明理由20(12分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.21(12分)函数,且恒成立.(1)求实数的集合;(2)当时,判断图象与图象的交点个数,并证明.(参考数据:)22(10分)已知数列的前项和和通项满足.(1)求数列的通项公式;(2)已知数列中,求

6、数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】设,计算可得,再结合图像即可求出答案.【详解】设,则,则,由于函数的最小值为0,作出函数的大致图像, 结合图像,得,所以.故选:C【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.2A【解析】设直线直线与轴正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.【详解】如图,设直线直线与轴正半轴所成的最小正角为因为点在角的终边上,所以依题有,则,所以,故选:A【点睛】本题考查三角

7、函数的定义及诱导公式,属于基础题.3C【解析】将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角, ,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.4B【解析】设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求

8、得的值,结合焦点弦长公式可求得.【详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,可得,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.5C【解析】从频率分布直方图可知,用水量超过15m的住户的频率为,即分层抽样的50户中有0.350=15户住户的用水量超过15立方米所以小区内用水量超过15立方米的住户户数为,故选C6D【解析】设等比数列的公比为q,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q【详解】由题意,正项

9、等比数列中,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题7A【解析】根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得: ,得双曲线的一条渐近线的方程为 焦点在x、y轴上两种情况讨论:当焦点在x轴上时有: 当焦点在y轴上时有: 求得双曲线的离心率 2或故选:A【点睛】本小题主要考查直线与圆的位置

10、关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想解题的关键是:由圆的切线求得直线 的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值此题易忽视两解得出错误答案8D【解析】根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.9B【解析】先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由

11、题,即 由累加法可得: 即对于任意的,不等式恒成立即 令 可得且即 可得或故选B【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.10D【解析】由题意,设第次爬行后仍然在上底面的概率为.若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【详解】由题意,设第次爬行后仍然在上底面的概率为.若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;若上一步在下面,则第步不在上

12、面的概率是.如果爬上来,其概率是,两种事件又是互斥的,,即,数列是以为公比的等比数列,而,所以,当时,故选:D.【点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.11D【解析】通过条件判断直线l与平面相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面,且l可知直线l与平面相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.12C【解析】原式由正弦定理化简得,由于,可求的值.【详解】解:由及正弦定理得.因为,所以代入上式化简得.由于,所以.又,故.故选:C.【点睛】本题主要

13、考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13,【解析】根据图象得出该函数的最大值和最小值,可得,结合图象求得该函数的最小正周期,可得出,再将点代入函数解析式,求出的值,即可求得该函数的解析式.【详解】由图象可知,从题图中可以看出,从时是函数的半个周期,则,.又,得,取,所以,故答案为:,【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.14【解析】三视图还原如下图:,由于每个面是直角,显然外接球球心O在AC的中点.所以,填。【点睛】三视图还原,当出现三个尖点在一个位置时,我们常用“

14、揪尖法”。外接球球心到各个顶点的距离相等,而直角三角形斜边上的中点到各顶点的距离相等,所以本题的球心为AC中点。156 【解析】由题得 所以焦距,故第一个空填6.由题得渐近线方程为.故第二个空填.16【解析】根据定积分的计算,得到,令,求得,即可得到答案【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1): ;: (2) 【解析】(1)由可得,由,消去

15、参数,可得直线的普通方程为 由可得,将,代入上式,可得,所以曲线的直角坐标方程为(2)由(1)得,的普通方程为,将其化为极坐标方程可得,当时,所以18(1)最小正周期为,单调递增区间为;(2).【解析】(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可求得该函数的单调递增区间;(2)由求得,由得出或,分两种情况讨论,结合余弦定理解三角形,进行利用三角形的面积公式可求得的面积.【详解】(1),所以,函数的最小正周期为,由得,因此,函数的单调递增区间为;(2)由,得,或,或,又,即.当时,即,则由,得,则,此时,的面积为;当时,则,即,则由,解

16、得,.综上,的面积为.【点睛】本题考查正弦型函数的周期和单调区间的求解,同时也考查了三角形面积的计算,涉及余弦定理解三角形的应用,考查计算能力,属于中等题.19(1)(2)为定值【解析】(1)根据题意,得出,从而得出椭圆的标准方程(2)根据题意设直线方程:,因为直线与椭圆相切,这有一个交点,联立直线与椭圆方程得,则,解得把和代入,得和 ,的表达式,比即可得出为定值【详解】解:(1)依题意,所以椭圆的标准方程为(2)为定值.因为直线分别与直线和直线相交,所以,直线一定存在斜率设直线:,由得,由,得 把代入,得,把代入,得,又因为,所以,由式,得, 把式代入式,得,即为定值【点睛】本题考查椭圆的定

17、义、方程、和性质,主要考查椭圆方程的运用,考查椭圆的定值问题,考查计算能力和转化思想,是中档题.20(1);(2)【解析】(1)先通过求得,再由得,和条件中的式子作差可得答案;(2)变形可得,通过裂项求和法可得答案.【详解】(1),当时,当时,得:,适合,故;(2),.【点睛】本题考查法求数列的通项公式,考查裂项求和,是基础题.21(1);(2)2个,证明见解析【解析】(1)要恒成立,只要的最小值大于或等于零即可,所以只要讨论求解看是否有最小值;(2)将图像与图像的交点个数转化为方程实数解的个数问题,然后构造函数,再利用导数讨论此函数零点的个数.【详解】(1)的定义域为,因为,1当时,在上单调递减,时,使得,与条件矛盾;2当时,由,得;由,得,所以在上单调递减,在上单调递增,即有,由恒成立,所以恒成立,令,若;若;而时,要使恒成立,故.(2)原问题转化为方程实根个数问题,当时,图象与图象有且仅有2个交点,理由如下:由,即,令,因为,所以是的一根;,1当时,所以在上单调递减,即在上无实根;2当时,则在上单调递递增,又,所以在上有唯一实根,且满足,当时,在上单调递减,此时在上无实根;当时,在上单调递增,故在上有唯一实根.3当时,由(1)知,在上单调递增,所以,故,所以在上无实根.综合1,2,3,故有两个实根,即图象与图象有且仅有2个交点.【点睛】此题考查不等式恒成立问题、函数与方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论