版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第六章 数 列本章知识结构图数列常见递推类型及方法逐差累加法逐商累积法构造等比数列aneq f(q,p1)构造等差数列an1anf (n)eq f(an + 1,an)f (n)an1panqpan1ananan1化为eq f(an1,qn)=eq f(p,q)eq f(an,qn1)1转为an + 1panqn公式法:应用等差、等比数列的前n项和公式分组求和法倒序相加法裂项求和法错位相加法常见求和方法概念表示等差数列与等比数列的类比解析法:anf (n)通项公式图象法列表法递推公式等差数列通项公式求和公式性质判断ana1(n1)dana1qn1anamaparanamapar前n项和Sneq
2、 f(n(a1an),2)前n项积(an0)Tneq r(a1an)n)等比数列an0,q0Sneq blc(aal(na1,q1,f(a1(1qn),1q),q1)数列是特殊的函数第一节 等差数列与等比数列考纲解读理解等差数列、等比数列的概念.掌握等差数列、等比数列的通项公式与前n项和公式.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.了解等差数列与一次函数、等比数列的性质以及函数的关系一直是高考中的热点.命题趋势探究从内容上看,等差、等比数列的性质以及与函数的关系一直是高考中的热点.2. 在能力方面,要求学生具备一定的创新能力和抽象概括能力.3. 从命题
3、形式上看,以选择、填空题为主,难度不大.知识点精讲一、基本概念1.数列(1)定义.按照一定顺序排列的一列数就叫做数列.(2)数列与函数的关系.从函数的角度来看,数列是特殊的函数.在中,当自变量时,所对应的函数值就构成一数列,通常记为,所以数列有些问题可用函数方法来解决.2.等差数列(1)定义.一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一常数,则该数列叫做等差数列,这个常数叫做公差,常用字母表示,即.(2)等差数列的通项公式.若等差数列的首项是,公差是,则其通项公式为,是关于的一次型函数.或,公差(直线的斜率)().(3)等差中项.若成等差数列,那么叫做与的等差中项,即或,.在一
4、个等差数列中,从第2项起(有穷等差数列的末项除外),每一项都是它的前一项与后一项的等差中项;事实上,等差数列中每一项都是与其等距离的前后两项的等差中项.(4)等差数列的前项和(类似于),是关于的二次型函数(二次项系数为且常数项为0).的图像在过原点的直线上或在过原点的抛物线上.3.等比数列(1)定义.一般地,如果一个数列从第2项起,每一项与它前一项的比等于同一个非零常数,则该数列叫做等比数列,这个常数叫做公比,常用字母表示,即.(2)等比数列的通项公式.等比数列的通项,是不含常数项的指数型函数.(3).(4)等比中项如果成等比数列,那么叫做与的等比中项,即或(两个同号实数的等比中项有两个).(
5、5)等比数列的前项和注等比数列的前项和公式有两种形式,在求等比数列的前项和时,首先要判断公比是否为1,再由的情况选择相应的求和公式,当不能判断公比是否为1时,要分与两种情况讨论求解.已知(项数),则利用求解;已知,则利用求解.,为关于的指数型函数,且系数与常数互为相反数.例如等比数列,前项和为,则.解:等比数列前项和,则.二、基本性质1.等差数列的性质(1)等差中项的推广.当时,则有,特别地,当时,则有.(2)等差数列线性组合.设是等差数列,则也是等差数列.设是等差数列,则也是等差数列.(3)有限数列.对于项数为的等差数列,有:().().对于项数为的等差数列,有;().().(4)等差数列的
6、单调性及前项和的最值.公差为递增等差数列,有最小值;公差为递减等差数列,有最大值;公差为常数列.特别地若,则有最大值(所有正项或非负项之和);若,则有最小值(所有负项或非正项之和).(5)其他衍生等差数列.若已知等差数列,公差为,前项和为,则:等间距抽取为等差数列,公差为.等长度截取为等差数列,公差为.算术平均值为等差数列,公差为.2.等差数列的几个重要结论(1)等差数列中,若,则.(2)等差数列中,若,则.(3)等差数列中,若,则.(4)若与为等差数列,且前项和为与,则.3.等比数列的性质(1)等比中项的推广.若时,则,特别地,当时,.(2)设为等比数列,则(为非零常数),仍为等比数列.设与
7、为等比数列,则也为等比数列.(3)等比数列的单调性(等比数列的单调性由首项与公比决定).当或时,为递增数列;当或时,为递减数列.(4)其他衍生等比数列.若已知等比数列,公比为,前项和为,则:等间距抽取为等比数列,公比为.等长度截取为等比数列,公比为(当时,不为偶数).4.等差数列与等比数列的转化(1)若为正项等比数列,则为等差数列.(2)若为等差数列,则为等比数列.(3)若既是等差数列又是等比数列是非零常数列.题型归纳及思路提示题型 等差、等比数列的通项及基本量的求解思路提示利用等差(比)数列的通项公式或前项和公式,列出关于基本量的方程或不等式从而求出所求的量.一、求等差数列的公差及公差的取值
8、范围例6.1 记等差数列的前项和为,若,则该数列的公差( ).A.7 B.6 C.3 D.2解析 由式可解得,故选C.评注 求解基本量用的是方程思想.变式1 (2017全国1理4)记为等差数列的前项和若,则的公差为( ).A1 B2 C4 D8解析 ,联立,得,即,所以.故选C.变式2 已知等差数列首项为31,从第16项起小于1,则此数列公差的取值范围是( ).A. B. C. D.解析 由已知心有,故排除C;又由得解出故选B.二、求等比数列的公比例6.2(1)(2018北京卷文) “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平
9、均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为( )A. B. C. D. 【答案】D【解析】因为每一个单音与前一个单音频率比为,所以,又,则故选D.(2)在等比数列中,则公比的值为( ).A.2 B.3 C.4 D.8解析 因为,所以则,故选A.变式1 等比数列的前项和为,且成等差数列,若,则( ).A.7 B.8 C.15 D.16解析 设an的公比为q,由成等差数列知,即,且,故得.所以.故选C.变式2 等比数列的前项和为,若成等差数列,则的公比为.解析 解法一:等比数列a
10、n的公比(因为不成等差数列),由成等差数列,得,即,解得.解法二:由成等差数列, 得,.评注 等比数列an的前n项和为,若成等差数列,则得三、求数列的通项例6.3 (1)2016全国甲文17)等差数列中,.求的通项公式; (2)(2017全国1文17)记为等比数列的前项和.已知,.求的通项公式;解析 (1)解析 ,解得,所以().(2)解析 由题意设等比数列的首项为,公比为,则,从而,即,整理得,因此,所以,数列的通项公式为变式1 为等差数列的前项和,则.解析 利用等差数列的性质及通项公式求解.因为等差数列an中,即,又,所以,则变式2 已知两个等比数列,满足,求数列的通项公式.解析 设的公比
11、为q,则,由成等比数列得,即解得所以的通项公式为.例6.4 在等差数列中,且为和的等比中项,求数列的前项和为.解析 设该数列的公差为,前项和为.由已知,得,所以,解得或,即数列的首项为4,公差为0,或首项为1,公差为3.所以数列的前项和为或.变式1 已知数列的前项和,则其通项;若它的第项满足,则.解析 当n=1时,由,求得此式对于也成立.要满足只需从而有而因此变式2 已知数列的前项和为非零实数),那么( ).A.一定是等差数列 B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列解析 当n=1时,得当时,(时也成立)当时, ,为等差数列;当时,为等比数
12、列,首项为公比为a.故选C.评注 本题还可以使用结论法,当时, 为等差数列,当时,因为系常互反的指数函数,故为等比数列.题型81 等差、等比数列的求和思路提示求解等差或等比数列的前项和,要准确地记住求和公式,并合理选取公式,尤其是要注意其项数的值;对于奇偶项通项不统一和含绝对值的数列的求和问题要注意分类讨论.主要是从为奇数、偶数,项的正、负进行分类.一、公式法(准确记忆公式,合理选取公式)例6.5 在等比数列中,若,则该数列的前10项和为( ).解析 由,所以,故选B.变式1 是由正数组成的等比数列,为前项和,已知,则.解析 由数列为等比数列,得=1, ,又为正项数列,所以,设等比数列的公比为
13、q,得,即,得(舍)或.=变式2 设,则.解析 解法一:利用公式解法二:利用,(指数成等差数列,故一共有项).解法三:当时,只有D符合.故选D.评注 等比数列的求和公式利用时,要特别注意项数的问题,本题中的项共有项(指数成等差数列,得)但使用即解法一不必考虑项数,只需知首项、末项及公比即可,这样计算等比数列的前项和会更加简捷.二、关于等比数列求和公式中的讨论例6.6 设等比数列的前项和为,若成等差数列,求数列的公比.解析 若,则,因为,所以,与成等差数列矛盾,故. 由题意可得,即有,整理得,又,故,即.因为,所以,所以.变式1 设数列是等比数列,其前项和为,且,则其公比.解析 当时,符合题目条
14、件;当时,由,因为,所以,解得.综上,公比为或.变式2 求和.解析 当时,;当时,;当且时,所以两式相减得,所以.又当时,符合上式,综上,.三、关于奇偶项求和问题的讨论例6.7 已知数列的通项公式为,求其前项和为.解析 (1)当为偶数时,.(2)当为奇数时,则为偶数,所以.综上,.评注:本题中,将为奇数的情形转化为为偶数的情形,可以避免 不必要的计算,此技巧值得同学们借鉴和应用。变式1 已知数列中,通项,求其前项和.解析(1)当为偶数时,所以.(2)当为奇数时,则为偶数,所以.综上,四、对于含绝对值的数列求和例6.8 已知数列的前项和,数列的每一项都有 ,求数列的前项和解析:由,当时,当时,满
15、足,故()由,当时,此时当时,此时故数列的前项和评注:由正项开始的递减等差数列的绝对值求和的计算题解题步骤如下:(1)首先找出零值或者符号由正变负的项(2)在对进行讨论,当时,当时,变式1 在等差数列中,其前项和为(1)求使的最小正整数(2)求的表达式解析 (1)由为等差数列,得,则,得,故最小正整数为.(2),当时,;当时,.故题型82 等差、等比数列的性质应用思路提示利用等差、等比数列的性质,主要是利用: = 1 * GB3 * MERGEFORMAT 等差中项和等比中项 = 2 * GB3 * MERGEFORMAT 等差数列中成等差数列;等比数列中(当时不为偶数)成等比数列. = 3
16、* GB3 * MERGEFORMAT 等差数列 = 4 * GB3 * MERGEFORMAT 等差数列的单调性利用以上性质,对巧解数列的选择题和填空题大有裨益。利用性质:当时,在等差数列中,有;在等比数列中,有求解。例6.9 已知等差数列的前项和为,若,则等于( )A、18 B、36 C、54 D、72解析:由得,72故选D变式1 (2015重庆理2)在等差数列中,若,则( ).A. B. 0 C. 1 D. 6解析 由等差中项知:,所以.故选B.变式2 在等差数列中,则该数列的前13项和等于( )A、13 B、26 C、52 D、156解析 由,得,.故选B.变式3在等差数列中,则该数列
17、的前9项和等于( )A、66 B、99 C、144 D、297解析 解法一:设等差数列的首项为,公差为,则.解法二:由于为等差数列,得二、利用等差数列中成等差数列;等比数列中(当时不为偶数成等比数列求解。例6.10 等差数列的前项和为,若,则等于( )A、12 B、18 C、24 D、42解析:由成等差数列且,知,可得=14+=24 故选C评注:本题除了使用本法求解之外,还有几种求解方法,如(1)基本量法;(2)使用为等差数列求解;(3)使用求解变式1 等差数列的前项和为,若,则( )A、 B、 C、 D、解析 由等差数列的性质知,成等差数列,令,则,则,所以.故选A.变式2 等比数列的前项和
18、为,若,则( )A、2 B、 C、 D、3解析 由等差数列的前项和为,可知成等差数列,则可设,则得,故.故选B.用有限等差数列的性质求解例6.11 已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A、5 B、4 C、3 D、2解析:依题意有, 可知,得,故选C变式1 已知等差数列的前项和为377,项数为奇数,且奇数项的和与偶数项的和之比为7:6,求中项解析 设,则的中间项为,解得即中间项为.变式2 已知数列与都是等差数列,且前项和为与,且,则使得为整数的正整数的个数是( )A、2 B、3 C、4 D、5解析 ,因此,故,共个数.故选D.利用等差、等比数列的单调性
19、求解例6.12 已知数列是递增数列,且对,都有,则实数的取值范围是( )A、 B、 C、 D、解析:由递增数列的定义,(),得,即,恒成立,则,故选D评注:(1)【错解】因为=,由题意知是递增数列,所以在上是单调递增函数。因此可得,即所求的取值范围是.以上解答由是递增数列断定在上是单调递增函数,这是错误的,因为数列通项公式中的是正整数,而不是取上的任意实数。如图6-1所示的数列显然是递增数列,但不满足,事实上,.上述错解是由于忽略的取值范围而导致错误。在处理数列的单调性问题时应利用数列的单调性定义,即“若数列是递增数列,恒成立”。数列的单调性与,的单调性不完全一致。一般情况下我们不应把数列的单
20、调性转化为相应连续函数的单调性来处理。但若数列对应的连续函数是单调函数,则可以借助其单调性来求解数列的单调性问题。即“离散函数有单调性连续函数由单调性;连续函数有单调性离散函数有单调性”。变式1 已知函数,若数列满足 (),且是递增数列,则实数的取值范围是( )A、 B、 C、 D、解析 因为数列为递增数列,所以在上单调递增,故在与上分别递增,且,故,即,故的取值范围是,故选C.例6.13 在等差数列中,已知,前项和为,且,求当为何值时,取最大值,并求此最大值。分析:由及,可求出,进而求出通项,由通项得到此数列前多少项为正,或利用是关于的二次函数,利用二次函数求最值的方法求解。解析 解法一:因
21、为,所以,得,所以,故,当时,;当时,;所以当时,取最大值,最大值为=130解法二:依题意,,如图6-2所示。由得时取最大值,得到,=130解法三: 由知,故,得,故当时取最大值,最大值为=130.评注:求等差数列前项和的最值的常用方法如下:(1)利用等差数列的单调性,求出其正负转折项。(2)利用性质求出其正负转折项,便可以求得和的最值。(3)利用等差数列前项和为二次函数,根据二次函数的性质求最值。变式1 数列是等差数列,若,且其前项和有最小值,那么当取最小值时,等于( )A、11 B、17 C、19 D、20解析 由,为等差数列且其前项和有最小值,故,因此,故,如图6-5所示,因此当取得最小
22、正值时,故选D.变式2 设等比数列的首项为,公比为,则“”是“对于任意都有”的( )A、充分不必要条件 B、必要不充分条件 C、充分必要条件 D、既不充分也不必要条件解析由或可得为递增数列,即,反之不一定得到,故“且”是“对于任意都有”的充分不必要条件.变式3 已知(),则在数列的前50项中最小项和最大项分别是( )A、 B、 C、 D、解析 ,当时,单调递增,且;当时,单调递增,且,所以数列的前50项中最小项和最大项分别是.故选D.题型83 判断和证明数列是等差、等比数列思路提示判断和证明数列是等差、等比数列常见的3中方法如下:(1)定义法:对于的任意正整数,都有(或)为同一常数(用于证明)
23、。(2)通项公式法: = 1 * GB3 * MERGEFORMAT 若,则数列为等差数列(用于判断); = 2 * GB3 * MERGEFORMAT 若,则数列为等比数列(用于判断);(3)中项公式法: = 1 * GB3 * MERGEFORMAT 若(),则数列为等差数列(用于证明); = 2 * GB3 * MERGEFORMAT 若(),则数列为等比数列(用于证明);定义法例6.14 (1)设为等差数列,证明:数列()是等比数列。(2)设为正项等比数列,证明:数列()是等差数列。分析 本题蒋函数与数列巧妙地结合,完美地进行等差数列与等比数列的转化,可利用定义法证明。解析(1)为等差
24、数列,则(,为常数),令,则是常数,所以数列是等比数列。(2)为正项等比数列,则()令,则是常数,所以数列是等差数列。评注 将等差数列转化为等比数列,利用指数运算来转化;将正项等比数列转化为等差数列,利用对数运算来转化。变式1 在数列中,且(1)设,求证:数列是等比数列(2)设,求证:数列是等差数列解析 (1)由-得,所以.当时,所以所以,令,所以,故数列是等比数列.(2)因为数列是等比数列,.所以,则,所以令,又,故,因此数列是等差数列.变式2 数列的前项和为,已知,(),证明:数列是等比数列。解析 由得,所以,所以又,因此数列是等比数列.变式3 已知定义在R上的函数和数列满足下列条件:,(
25、),(),(),其中为常数,为非零常数。令(),证明:数列为等比数列解析 ,所以,已知,所以,又,则,且,所以数列是等比数列.中项公式法例6.15 已知数列满足,(). (1)证明:数列为等比数列。 (2)求数列的通项公式。 (3)若数列满足(),证明:数列是等差数列。分析 第(1)问利用定义证明;由第(1)问可得的通项公式;第(3)问的解答需要将的通项公式带入并整理。三问环环相扣,每一问都是后一问解题的基础。解析 (1)因为,所以,即,(),又,故数列是首项为2,公比为2的等比数列。(2)由(1)得()故,()叠加得到,所以()时也成立,所以()(3)由(2)可知,即,故设为数列的前项和,则
26、 = 1 * GB3 * MERGEFORMAT , = 2 * GB3 * MERGEFORMAT ,两式相减得即 = 3 * GB3 * MERGEFORMAT 则有 = 4 * GB3 * MERGEFORMAT () = 4 * GB3 * MERGEFORMAT = 3 * GB3 * MERGEFORMAT 得,即()故数列是等差数列。评注 第(1)问给出数列的一个递推公式,要证明形如的数列为等差或等比数列,一般将递推公式代入,利用定义法证明。利用等差中项法解决第(3)问并不能明显看出来,这需要在对第(3)问的整理和变形中去发现解题方法。在解数学题时,既要有严谨的推理,也要勇于探索
27、尝试。变式1 设是公比不为1的等比数列,其前项和为,且,成等差数列(1)求数列的公比;(2)证明:对任意成等差数列解析 (1)依题意,设公比不为1的等比数列的公比为,由成等差数列,得,所以,得,解得(舍),(2)要证明对任意,成等差数列,只需证明因为所以对任意,成等差数列.或利用求和公式展开.,因此对任意,成等差数列.变式2设数列中的每一项都不为0 . 证明:为等差数列的充分必要条件是:对任何,都有+解析 先证必要性.设数列的公差为,若,则所述等式显然成立.若则再正充分性.依题意有-得在上式两端同乘,得同理可得-得,即,所以为等差数列.评注 本题考查等差数列、充要条件等有关知识和推理论证、运算
28、求解能力.求解时,必要性证明的关键是利用裂项相消的方法,充分性证明的关键是利用递推关系推导出等差数列的定义.题型84 等差数列与等比数列的综合应用思路提示等差数列与等比数列的相互转化:等差数列通过指数运算转化为正项等比数列,正项等比数列通过对数运算转化为等差数列。等差数列和等比数列的交汇,若一个数列既是等差数列又是等比数列,则该数列为非零常数数列。一、等差数列与等比数列的相互转化例6.16 已知数列,是各项均为正数的等比数列,设()(1)数列是否为等比数列?证明你的结论(2)设数列,的前项和分别为,,若,求数列的前项和解析 (1)数列是等比数列。依题意,设的公比为(),的公比为 (),则,故数
29、列是等比数列。(2)由题意知数列,都是等差数列,且,得到,因为,都是关于的一次型函数,可令,则当时,即,,同理 ,故,进一步可得数列的前项和为变式1 设数列是正项等比数列,且,那么的值是( )A、30 B、20 C、10 D、5解析 是正项等比数列,数列是等差数列,故故选B.变式2 已知等比数列满足各项均为正数,且(),则当时,等于( )A、 B、 C、 D、解析 因为是正项等比数列,所以是等差数列.故故选C.变式3 设是公比大于1的等比数列,前项和为,已知,且,构成等差数列。(1)求数列的通项;(2)令(),求数列的前项和.分析 为公比大于1的等比数列,取对数后为等差数列,因此Tn为等差数列
30、的求和计算.解析 (1)由已知得解得.设数列的公比为q,由可得,可知即解得由题意得所以由可得故数列的通项为(2)由于,由(1)得,所以故等差数列和等比数列的交汇问题例6.17 已知首项为的等比数列不是递减数列,其前项和为(),且,成等差数列,求数列的通项公式。分析 利用等比数列的性质结合已知条件求出公比,进而可得通项公式。解析 设等比数列的公比为,因为,成等差数列,所以2()=+,即,于是,又数列不是递减数列,所以,故数列的通项公式变式1 设数列是首项为,公差为的等差数列,其前项和为 记,(),成等比数列,证明: ()分析 利用将表示出来,然后根据成等比数列,得到与的关系,可验证解析 由,得又
31、因为成等比数列,所以,即,化简得因为,所以因此,对于所有的,有从而对于所有的,有例6.18 在等差数列中,公差,是与的等比中项,已知数列,成等比数列,求数列的通项解析 依题意可得,所以,由可得,则,由已知得是等比数列。因为所以成等比数列,首项为1,公比为3,由此,所以(),故数列的通项为变式1 设2009个不全相等的正数,依次围成一个圆圈,且,是公差为的等差数列,而,是公比为的等比数列,+=12,求通项()解析 因为是公比为的等比数列,从而,由,得,解得或又均为正数,故或(舍)从而时,而当时,由是公比为的等比数列,观察指数规律得因此,例6,19 设是各项均不为零的项等差数列,且公差.若将此数列
32、删去某一项后得到的数列(按原来的顺序排列)是等比数列。(1) = 1 * GB3 * MERGEFORMAT 当时,求的数值; = 2 * GB3 * MERGEFORMAT 求的所有可能值.(2)求证:对于给定的正整数,存在一个各项及公差均不为0的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列。解析 (1) = 1 * GB3 * MERGEFORMAT 依题意,等差数列为,假设要删去或,当删去时,既是等差数列又是等比数列,故,与题意不合;当删除时,既是等差数列又是等比数列,故,与题意不合;因此删去的项只能是或若删去,则由成等比数列,得因,故由上式得,即 4此时数列为,满足题设若删
33、去,则成等比数列,得 因,故由上 式得,即 1此时数列为 满足题设综上可知的值为或1 = 2 * GB3 * MERGEFORMAT 一个“基本事实”:一个数列既是等差数列又是等比数列,则该数列是非零常数数列。当n6时,则从满足题设的数列中删去任意一项后得到的数列,必有原数列中的连续三项,从而这三项既成等差数列又成等比数列,故知,数列的公差必为0,这与题设矛盾所以满足题设的数列的项数 又因题设,故或当时,由(1)中的讨论知存在满足题设的数列当时,若存在满足题设的数列,则由“基本事实”知,删去的项只能是,从而成等比数列,故且分别化简上述两个等式,得和,故矛盾因此,不存在满足题设的项数为5的等差数
34、列综上可知,只能为4 假设对于某个正整数,存在一个公差为的项等差数列,其中三项,成等比数列,这里,则有,整理得,由得:且或者当且时,若且,则,矛盾。若,等式右边为有理数,当为无理数时就产生矛盾。因此,只要为无理数,中任意三项不构成等比数列。评注 本题考察了一个基本事实:一个数列既是等差数列又是等比数列,则该数列是非零常数数列。变式1、设等差数列包含1和 ,求证:中的任意三项不构成等比数列。解析 先设等差数列的公差为,存在,于是,即.如果数列中有不同的三项构成等比数列,则不妨设则由成等比数列,故所以化简得 +得,代入中,则,可得,与假设矛盾,因此命题得证.评注 本题实质上是例6.19的特例,由例6.19可直接推出本命题.最有效训练题23(限时45分钟)等差数列的公差不为零,首项,是和的等比中项, 则数列的前10项之和是( ) A、90 B、100 C、145 D、190设数列为等差数列,其前项和为,已知, ,若对任意的,都有,则的值为( ) A、22 B、21 C、20 D、193、如果等差数列中,那么( ) A、14 B、21 C、28 D、35已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分家协议的内容
- 个人的居间协议模板
- 2023装修房子协议书七篇
- 银屑病甲病因介绍
- 竣工验收要点培训课件
- (范文)雕刻机项目立项报告
- 公路工程竣工资料管理 黄 00课件讲解
- 2024年秋江苏名小四年级语文12月月考试卷-A4
- 2023年废弃资源和废旧材料回收加工品项目融资计划书
- 2023年家庭投影仪项目融资计划书
- 内科学糖尿病教案
- 《高尿酸血症》课件
- 微量泵的操作及报警处置课件查房
- 云南省昆明市西山区2023-2024学年七年级上学期期末语文试卷
- 人教版小学数学四年级上册5 1《平行与垂直》练习
- 市政设施养护面年度计划表
- 公差配合与技术测量技术教案
- 坚持教育、科技、人才“三位一体”为高质量发展贡献高校力量
- 污水处理厂工艺设计及计算
- 杭州宇泰机电设备有限公司X射线机室内探伤项目(新建)环境影响报告
- 2023年冷柜行业专题研究报告
评论
0/150
提交评论