版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若(x1)01成立,则x的取值范围是()Ax1Bx1Cx0Dx12二次函数(a0)的图象如图所示,则下列命题中正确的是()Aa bcB一
2、次函数y=ax +c的图象不经第四象限Cm(am+b)+ba(m是任意实数)D3b+2c03如图,O与直线l1相离,圆心O到直线l1的距离OB2,OA4,将直线l1绕点A逆时针旋转30后得到的直线l2刚好与O相切于点C,则OC( )A1B2C3D44下列各式中的变形,错误的是()A2-3x=-23xB-b-2a=b2aCba=3b3aDyx=y+3x+35下列计算中正确的是()Ax2+x2=x4Bx6x3=x2C(x3)2=x6Dx-1=x6如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得 BC=6 米,CD=4 米,BCD=150,在 D 处测得电线
3、杆顶端 A 的仰 角为 30,则电线杆 AB 的高度为( )ABCD7下列美丽的图案中,不是轴对称图形的是( )ABCD8二次函数yx26x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)9如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD10已知抛物线的图像与轴交于、两点(点在点的右侧),与轴交于点.给出下列结论:当的条件下,无论取何值,点是一个定点;当的条件下,无论取何值,抛物线的对称轴一定位于轴的左侧;的最小值不大于;若,则.其中正确的结论有( )个.A1个B2个C3个D4个二、
4、填空题(共7小题,每小题3分,满分21分)11计算a3a2a的结果等于_12若关于x的方程有两个相等的实数根,则m的值是_13在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_14化简的结果等于_15用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖_块;第n个图案有白色地面砖_块16如图,已知直线y=x+4与双曲线y=(x0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=_17如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,则_三、解答题(共7小题,满分69分)18(10分)解不等式组请
5、结合题意填空,完成本题的解答:(I)解不等式(1),得 ;(II)解不等式(2),得 ;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解集为 19(5分)如图,已知ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F, (1)判断ABC的形状,并证明你的结论;(2)如图1,若BE=CE=,求A的面积;(3)如图2,若tanCEF=,求cosC的值.20(8分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程该项绿化工程原计划每天完成
6、多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?21(10分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是32,两队共同施工6天可以完成(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?22(10分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称
7、轴,过点的直线与直线相交于点,且点在第一象限(1)求该抛物线的解析式;(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标23(12分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?24(14分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的
8、总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价)小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8812小刚121016(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题解析:由题意可知:x-10,x1故选D.2、D【解析】解:A由二次函数的图象开口向上可得a0,由抛物线与y轴交于x轴下方可得c0,由x=1,得出
9、=1,故b0,b=2a,则bac,故此选项错误;Ba0,c0,一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C当x=1时,y最小,即abc最小,故abcam2+bm+c,即m(am+b)+ba,故此选项错误;D由图象可知x=1,a+b+c0,对称轴x=1,当x=1,y0,当x=3时,y0,即9a3b+c0+得10a2b+2c0,b=2a,得出3b+2c0,故选项正确;故选D点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值3、B【解析】先利用三角函数计算出OAB60,再根据旋转的性质
10、得CAB30,根据切线的性质得OCAC,从而得到OAC30,然后根据含30度的直角三角形三边的关系可得到OC的长【详解】解:在RtABO中,sinOAB,OAB60,直线l1绕点A逆时针旋转30后得到的直线l1刚好与O相切于点C,CAB30,OCAC,OAC603030,在RtOAC中,OCOA1故选B【点睛】本题考查了直线与圆的位置关系:设O的半径为r,圆心O到直线l的距离为d,则直线l和O相交dr;直线l和O相切dr;直线l和O相离dr也考查了旋转的性质4、D【解析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案【详解】A、2-3x=-23x,故A正确;
11、B、分子、分母同时乘以1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、yxy+3x+3,故D错误;故选:D【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变5、C【解析】根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.【详解】A. x2+x2=2x2 ,故不正确; B. x6x3=x3 ,故不正确; C. (x3)2=x6 ,故正确; D. x1=,故不正确;故选C.【点睛】本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数
12、幂的意义,解答本题的关键是熟练掌握各知识点.6、B【解析】延长AD交BC的延长线于E,作DFBE于F,BCD=150,DCF=30,又CD=4,DF=2,CF= =2,由题意得E=30,EF= ,BE=BC+CF+EF=6+4,AB=BEtanE=(6+4)=(2+4)米,即电线杆的高度为(2+4)米点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.7、A【解析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本
13、选项错误故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合8、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质9、A【解析】分析:根据从上面看得到的图形是俯视图,可得答案详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图10、C【解析】
14、利用抛物线两点式方程进行判断;根据根的判别式来确定a的取值范围,然后根据对称轴方程进行计算;利用顶点坐标公式进行解答;利用两点间的距离公式进行解答【详解】y=ax1+(1-a)x-1=(x-1)(ax+1)则该抛物线恒过点A(1,0)故正确;y=ax1+(1-a)x-1(a0)的图象与x轴有1个交点,=(1-a)1+8a=(a+1)10,a-1该抛物线的对称轴为:x=,无法判定的正负故不一定正确;根据抛物线与y轴交于(0,-1)可知,y的最小值不大于-1,故正确;A(1,0),B(-,0),C(0,-1),当AB=AC时,解得:a=,故正确综上所述,正确的结论有3个故选C【点睛】考查了二次函数
15、与x轴的交点及其性质(1).抛物线是轴对称图形对称轴为直线x = - ,对称轴与抛物线唯一的交点为抛物线的顶点P;特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0);(1).抛物线有一个顶点P,坐标为P ( -b/1a ,(4ac-b1)/4a ),当-=0,即b=0时,P在y轴上;当= b1-4ac=0时,P在x轴上;(3).二次项系数a决定抛物线的开口方向和大小;当a0时,抛物线开口向上;当a0),对称轴在y轴左;当a与b异号时(即ab0时,抛物线与x轴有1个交点;= b1-4ac=0时,抛物线与x轴有1个交点;= b1-4ac0时,函数在x= -b/1a处取得最小值f(-b/1a)
16、=4ac-b1/4a;在x|x-b/1a上是增函数;抛物线的开口向上;函数的值域是y|y4ac-b1/4a相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax1+c(a0).二、填空题(共7小题,每小题3分,满分21分)11、a1【解析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可【详解】解:原式=a31+1=a1故答案为a1【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则12、m=- 【解析】根据题意可以得到=0,从而可以求得m的值【详解】关于x的方程有两个相等的实数根,=,解得:.故答案为.13、3.05105【解析】科学记数法的表示形式为a1
17、0n的形式,其中1|a|10时,n是正数;当原数的绝对值1时,n是负数【详解】305000=3.05105故答案为:3.05105.【点睛】本题考查的知识点是科学记数法表示较大的数,解题关键是熟记科学计数法的表示方法.14、【解析】先通分变为同分母分式,然后根据分式的减法法则计算即可【详解】解:原式故答案为:【点睛】此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键15、18块 (4n+2)块 【解析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块【详解】解:第
18、1个图有白色块4+2,第2图有42+2,第3个图有43+2, 所以第4个图应该有44+2=18块, 第n个图应该有(4n+2)块【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力16、-3【解析】设A(a, a+4),B(c, c+4),则解得: x+4=,即x2+4xk=0,直线y=x+4与双曲线y=相交于A、B两点,a+c=4,ac=-k,(ca)2=(c+a)24ac=16+4k,AB=,由勾股定理得:(ca)2+c+4(a+4)2=()2,2 (ca)2=8,(ca)2=4,16+4k =4,解得:k=3,故答案为3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系
19、数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.17、【解析】试题分析:四边形ABCD与四边形EFGH位似,位似中心点是点O,则 故答案为点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键三、解答题(共7小题,满分69分)18、(I)x1;()x2;(III)见解析;()x1【解析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集【详解】(I)解不等式(1),得x1;()解不等式(2),得x2;()把不等式(1)和(2)解集在数轴上表示出来,如下图所示:()
20、原不等式组的解集为x1【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键19、 (1) ABC为直角三角形,证明见解析;(2)12;(3).【解析】(1)由,得CEFCBE,CBE=CEF,由BD为直径,得ADE+ABE=90,即可得DBC=90故ABC为直角三角形.(2)设EBC=ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30,则ABE=60故AB=BE=,则可求出求A的面积;(3)由(1)知D=CFE=CBE,故tanCBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4
21、a,过F作FKBD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tanC 再求出cosC即可.【详解】解:,CEFCBE,CBE=CEF,AE=AD,ADE=AED=FEC=CBE,BD为直径,ADE+ABE=90,CBE+ABE=90,DBC=90ABC为直角三角形.(2)BE=CE设EBC=ECB=x,BDE=EBC=x,AE=ADAED=ADE=x,CEF=AED=xBFE=2x在BDF中由内角和可知:3x=90 x=30ABE=60AB=BE=(3)由(1)知:D=CFE=CBE,tanCBE=,设EF=a,BE=2a,BF=,BD=2BF=,AD=AB=,,DE=2BE=4
22、a,过F作FKBD交CE于K,, , tanC cosC.【点睛】此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.20、 (1)2000;(2)2米【解析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米; (2)设人行道的宽度为x米,根据题意得,(203x)(82x)=56 解得:x=2或x=(不合题意,舍去)答:人行道的宽为2米
23、21、(1)甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天;(2)甲队应得的报酬为1600元,乙队应得的报酬为2400元【解析】(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据两队共同施工6天可以完成该工程,即可得出关于x的分式方程,解之经检验即可得出结论;(2)根据甲、乙两队单独完成这项工作所需的时间比可得出两队每日完成的工作量之比,再结合总报酬为4000元即可求出结论【详解】(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据题意得: 解得:x=5,经检验,x=5是所列分式方程的解且符合题意3x=15,2x=1答:甲队单
24、独完成此项工程需要15天,乙队单独完成此项工程需要1天(2)甲、乙两队单独完成这项工作所需的时间比是3:2,甲、乙两队每日完成的工作量之比是2:3,甲队应得的报酬为(元),乙队应得的报酬为40001600=2400(元)答:甲队应得的报酬为1600元,乙队应得的报酬为2400元【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键22、(1);(2);(3)或【解析】(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;(3)利用三角形相似求出ABCPBF,即可求出圆的半径,即可得出P点的坐标【详解】(1)抛物线的图象经过,把
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题七电场第1讲库仑定律、电场强度、电场线练习含答案
- 专业混凝土分包合同范本
- 《平衡计分卡培训》课件
- 高中数学 2.2 直线的方程 2.2.3.1 两条直线相交、平行与重合的条件教案 新人教B版必修2
- 八年级物理下册 第九章 机械和功 第三节 功教案 (新版)北师大版
- 六年级品德与社会上册 科学技术的另一面教案 泰山版
- 高中数学 1.1.2 空间向量的数量积运算教学设计 新人教A版选择性必修第一册
- 2024年六年级品社下册《让科学技术走进生活》教案1 冀教版
- 厨房管理规章制度
- 租借手机的合同(2篇)
- 北师大版二年级数学上册《数学好玩》(大单元教学设计)
- 当代社会政策分析 课件 第13、14章 反贫困社会政策、公益慈善政策
- 人防疏散基地建设技术标准 DG-TJ08-2419-2023
- 工程项目移交方案
- 医学检验技术生涯规划
- 2024时事政治必考试题库(预热题)
- 数字货币的经济影响
- 医疗技术操作规范制度及流程
- 《经济法基础》教案
- 户外直播知识竞赛答题附答案
- 手术室温暖的护士
评论
0/150
提交评论