版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题
2、目要求的)1下列性质中菱形不一定具有的性质是( )A对角线互相平分B对角线互相垂直C对角线相等D既是轴对称图形又是中心对称图形2下列计算或化简正确的是()ABCD3下列计算正确的是()Aa+a=2aBb3b3=2b3Ca3a=a3D(a5)2=a74如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿ABC的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示ADP的面积y(cm2)关于x(cm)的函数关系的图象是()ABCD5在RtABC中C90,A、B、C的对边分别为a、b、c,c3a,tanA的值为()ABCD36如图,直线a、b被c所截,若ab,1=
3、45,2=65,则3的度数为( )A110B115C120D1307三个等边三角形的摆放位置如图,若360,则12的度数为( ) A90B120C270D3608如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若l=65,则2的度数是()A25B35C45D659如图是某个几何体的三视图,该几何体是( )A圆锥B四棱锥C圆柱D四棱柱10如图,在中,,点分别在上,于,则的面积为( )ABCD11如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若A与DOB互余,则EB的长是( )A2B4CD212如图,在ABC中,AED=B,DE
4、=6,AB=10,AE=8,则BC的长度为( )ABC3D二、填空题:(本大题共6个小题,每小题4分,共24分)13平面直角坐标系中一点P(m3,12m)在第三象限,则m的取值范围是_14对于任意非零实数a、b,定义运算“”,使下列式子成立:,则ab= 15如图,已知点A(2,2)在双曲线上,将线段OA沿x轴正方向平移,若平移后的线段OA与双曲线的交点D恰为OA的中点,则平移距离OO长为_16如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是_17若关于的不等式组无解, 则的取值范围是 _.18如图所示,四边形ABCD中,对角线AC、BD交于点E,且,若,则CE的长为_三、
5、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知,如图所示直线y=kx+2(k0)与反比例函数y=(m0)分别交于点P,与y轴、x轴分别交于点A和点B,且cosABO=,过P点作x轴的垂线交于点C,连接AC,(1)求一次函数的解析式(2)若AC是PCB的中线,求反比例函数的关系式20(6分)如图,在ABC中,ABC=90(1)作ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与O的位置关系,直接写出结果21(6分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处
6、测得公路对面的点C与AE的夹角CAE=30,沿着AE方向前进15米到点B处测得CBE=45,求公路的宽度(结果精确到0.1米,参考数据:1.73)22(8分)如图,在平面直角坐标系中,直线y1=2x2与双曲线y2=交于A、C两点,ABOA交x轴于点B,且OA=AB(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1y2时x的取值范围23(8分)如图,在平面直角坐标系中,圆M经过原点O,直线与x轴、y轴分别相交于A,B两点(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D
7、、E两点,在抛物线上是否存在点P,使得SPDE=SABC?若存在,请求出点P的坐标;若不存在,请说明理由24(10分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,A=D求证:ACDE;若BF=13,EC=5,求BC的长 25(10分)如图所示,点B、F、C、E在同一直线上,ABBE,DEBE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE26(12分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果保留根号).27(12分)有大小两种
8、货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据菱形的性质:菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; 菱形是轴对称图形,
9、它有2条对称轴,分别是两条对角线所在直线【详解】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C考点:菱形的性质2、D【解析】解:A不是同类二次根式,不能合并,故A错误;B,故B错误;C,故C错误;D,正确故选D3、A【解析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解【详解】A.a+a=2a,故本选项正确;B.,故本选项错误;C. ,故本选项错误;D.,故本选项错误.
10、故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.4、B【解析】ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象【详解】解:当P点由A运动到B点时,即0 x2时,y2xx,当P点由B运动到C点时,即2x4时,y222,符合题意的函数关系的图象是B;故选B【点睛】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围5、B【解析】根据勾股定理和三角函数即可解答.【详解】解:已知在RtABC中C=90,A、B、C的对边分别为a
11、、b、c,c=3a,设a=x,则c=3x,b=2x.即tanA=.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.6、A【解析】试题分析:首先根据三角形的外角性质得到1+2=4,然后根据平行线的性质得到3=4求解解:根据三角形的外角性质,1+2=4=110,ab,3=4=110,故选A点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小7、B【解析】先根据图中是三个等边三角形可知三角形各内角等于60,用1,2,3表示出ABC各角的度数,再根据三角形内角和定理即可得出结论【详解】图中是三个等边三角形,3=60,ABC=180-60-60=60,ACB=180-6
12、0-2=120-2,BAC=180-60-1=120-1,ABC+ACB+BAC=180,60+(120-2)+(120-1)=180,1+2=120故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60是解答此题的关键8、A【解析】如图,过点C作CDa,再由平行线的性质即可得出结论【详解】如图,过点C作CDa,则1=ACD,ab,CDb,2=DCB,ACD+DCB=90,1+2=90,又1=65,2=25,故选A【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键9、B【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状
13、【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱故选B.【点睛】本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.10、C【解析】先利用三角函数求出BE=4m,同(1)的方法判断出1=3,进而得出ACQCEP,得出比例式求出PE,最后用面积的差即可得出结论;【详解】,CQ=4m,BP=5m,在RtABC中,sinB=,tanB=,如图2,过点P作PEBC于E,在RtBPE中,PE=BPsinB=5m=3m,tanB=,BE=4m,CE=BC-BE=8-4m,同(1)的方法得,1=3,ACQ=CEP,ACQCEP, , ,m
14、=,PE=3m=,SACP=SACB-SPCB=BCAC-BCPE=BC(AC-PE)=8(6- )=,故选C.【点睛】本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出ACQCEP是解题的关键11、D【解析】连接CO,由直径AB平分弦CD及垂径定理知COB=DOB,则A与COB互余,由圆周角定理知A=30,COE=60,则OCE=30,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,AB平分CD,COB=DOB,ABCD,CE=DE=2A与DOB互余,A+COB=90,又COB=2A,A=30,COE=60,OCE=30,
15、设OE=x,则CO=2x,CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,BO=CO=4,BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.12、A【解析】AED=B,A=AADEACB,DE=6,AB=10,AE=8,解得BC.故选A.二、填空题:(本大题共6个小题,每小题4分,共24分)13、0.5m3【解析】根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可【详解】点P(m3,12m)在第三象限,解得:0.5m3.故答案为:0.5m3.【点睛】本题考查了解一元二次方程组与象限及点的坐标的有关性质
16、,解题的关键是熟练的掌握解一元二次方程组与象限及点的坐标的有关性质.14、【解析】试题分析:根据已知数字等式得出变化规律,即可得出答案:,。15、1【解析】直接利用平移的性质以及反比例函数图象上点的坐标性质得出D点坐标进而得出答案【详解】点 A(2,2)在双曲线上,k4,平移后的线段OA与双曲线的交点 D 恰为 OA的中点,D点纵坐标为:1,DE1,OE1,D点横坐标为:x4,OO1,故答案为1【点睛】本题考查了反比例函数图象上的性质,正确得出D点坐标是解题关键16、1:4【解析】两个相似三角形对应边上的高的比为14,这两个相似三角形的相似比是1:4相似三角形的周长比等于相似比,它们的周长比1
17、:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.17、【解析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得【详解】,解得:xa+3,解得:x1根据题意得:a+31,解得:a-2故答案是:a-2【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤.18、【解析】此题有等腰三角形,所以可作BHCD,交EC于点G,利用三线合一性质及邻补角互补可得BGD=120,根据四边形内角和360,得到ABG+ADG=180此时再延长GB至K,使AK=AG,构造出等边AGK易证ABKA
18、DG,从而说明ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在RtDBH中利用勾股定理及三角函数知识得到EBG的正切值,然后作EFBG,求出EF,在RtEFG中解出EG长度,最后CE=CG+GE求解【详解】如图,作于H,交AC于点G,连接DG,BH垂直平分CD,延长GB至K,连接AK使,则是等边三角形,又,(),是等边三角形,设,则,在中,解得,当时,所以,作,设,则,故答案为【点睛】本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出
19、文字说明、证明过程或演算步骤19、(2)y=2x+2;(2)y=【解析】(2)由cosABO,可得到tanABO2,从而可得到k2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值【详解】(2)cosABO=,tanABO=2又OA=2OB=2B(-2,0)代入y=kx+2得k=2一次函数的解析式为y=2x+2(2)当x=0时,y=2,A(0,2)当y=0时,2x+2=0,解得:x=2B(2,0)AC是PCB的中线,P(2,4)m=xy=24=4,反例函数的解析式为y=【点睛】本题主要考查的是反比例函数与一次函数的交点、锐角三角函数
20、的定义、中点坐标公式的应用,确定一次函数系数ktanABO是解题的关键20、(1)见解析(2)相切【解析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可【详解】(1)如图所示:;(2)相切;过O点作ODAC于D点,CO平分ACB,OB=OD,即d=r,O与直线AC相切,【点睛】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出d=r是解题关键21、公路的宽为20.5米【解析】作CDAE,设CD=x米,由CBD=45知BD=CD=x,根据tanCAD=,可得=,解之
21、即可【详解】解:如图,过点C作CDAE于点D,设公路的宽CD=x米,CBD=45,BD=CD=x,在RtACD中,CAE=30,tanCAD=,即=,解得:x=20.5(米),答:公路的宽为20.5米【点睛】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形22、(1);(1)C(1,4),x的取值范围是x1或0 x1【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论【详解】(1)点A在直线
22、y1=1x1上,设A(x,1x1),过A作ACOB于C,ABOA,且OA=AB,OC=BC,AC=OB=OC,x=1x1,x=1,A(1,1),k=11=4,;(1),解得:,C(1,4),由图象得:y1y1时x的取值范围是x1或0 x1【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大23、(1)A(8,0),B(0,6);(2);(3)存在P点坐标为(4+,-1)或(4,-1)或(4+,1)或(4,1)时,使得【解析】分析:(1)令已知的直线的解析式中x=0,可求出B点坐标,令y=0,可求出A点坐
23、标;(2)根据A、B的坐标易得到M点坐标,若抛物线的顶点C在M上,那么C点必为抛物线对称轴与O的交点;根据A、B的坐标可求出AB的长,进而可得到M的半径及C点的坐标,再用待定系数法求解即可;(3)在(2)中已经求得了C点坐标,即可得到AC、BC的长;由圆周角定理: ACB=90,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P点坐标本题解析:(1)对于直线,当时,;当时,所以A(8,0),B(0,6); (2)在RtAOB中,AB=10,AOB=90,AB为M的直径,点M为AB的中点,M(4,3),MCy轴,MC=5,C(4,2),设抛物线的解析式为y=a(x+4)+2,把B(0,6
24、)代入得16a+2=6,解得a= ,抛物线的解析式为 ,即;(3)存在当y=0时, ,解得x,=2,x,=6,D(6,0),E(2,0), 设P(t,-6),=20,即|=1,当=-1,解得, ,此时P点坐标为(4+,-1)或(4,-1);当时 ,解得=4+,=4;此时P点坐标为(4+,1)或(4,1)综上所述,P点坐标为(4+,-1)或(4,-1)或(4+,1)或(4,1)时,使得点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.24、(1)证明见解析;(2)4.【解析】(1)首先证明ABCDFE可得ACE=DEF,进
25、而可得ACDE;(2)根据ABCDFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案【详解】解:(1)在ABC和DFE中, ABCDFE(SAS), ACE=DEF, ACDE;(2)ABCDFE, BC=EF, CBEC=EFEC, EB=CF, BF=13,EC=5,EB=4, CB=4+5=1【点睛】考点:全等三角形的判定与性质25、证明见解析【解析】试题分析:证明三角形ABCDEF,可得.试题解析:证明:,BC=EF,,B=E=90,AC=DF,ABCDEF, AB=DE.26、6+【解析】如下图,过点C作CFAB于点F,设AB长为x,则易得AF=x-4,在RtACF中利用的正切函数可由AF把CF表达出来,在RtABE中,利用的正切函数可由AB把BE表达出来,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年发布:版权授权合同范例
- 2024年太原客运资格证应用能力试题
- 2024年信阳道路旅客运输从业资格证模拟考试
- 2023届新高考化学选考一轮总复习训练-热点16 官能团的性质与有机反应类型
- 2024年乌鲁木齐客运从业资格证考试答题技巧与方法
- 2024年朔州客运从业资格证的考题
- 2024年加油站计量与质量检测设备采购承包合同
- 教师资格考试小学教育教学知识与能力试题与参考答案
- 《第二节 区域工业化与城市化-以我国珠江三角洲地区为例》(同步训练)高中地理必修3
- 基于流固耦合的加筋膨胀土边坡稳定性分析
- 统编版语文六年级上册第八单元大单元整体教学设计
- 教师个人业务学习笔记(41篇)
- 2025年高考语文复习备考复习策略讲座
- 数学史上的三次数学危机
- 2024年水电暖安装承包合同
- 缺乳(乳汁淤积)产妇的中医护理
- 2024北师大版新教材初中数学七年级上册内容解读课件(深度)
- 2024年公共营养师三级考试试卷及答案
- 2024年上半年软考信息系统项目管理师真题
- 北京市西城区2023-2024学年高一下学期期末英语试题(解析版)
- 三位数乘两位数乘法竖式计算练习100道及答案
评论
0/150
提交评论