版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、化工制图 第二章 投影和视图 学习目的:1、学习和掌握物体的正投影和三视图 的基本概念。2、学习和掌握物体点线面的投影知识。3、学习和掌握基本形体的视图的画法。4、理解和掌握基本形体的视图组合体的 视图的画法,能画出简单组合体的三 视图。 第一节 物体的正投影和三视图 1、投影法简介(1)投影的基本概念 投影法:投射线通过物体,向选定的 面投射,并在该面上得到图形的方法。 投影法是将空间物体表达成平面图 样的基础。 (2)投影法的分类 (一)中心投影法 中心投影法:投射线汇交于一点的投影法,见图2-1。 中心投影在一定条件下,投影的大小,是随投影中心S距离物体的远近或物体离投影投影面P的远近而
2、变化的。因此,中心投影不能真实反应物体的大小。HS(二)平行投影法 平行投影法:投射线相互平行的投影方 法,(S在无穷远处)。 根据投影面与射线相对位置(垂直或倾斜)不同又分为两种: 倾斜投影法和正投影法。 2.平行投影法-斜投影H2.平行投影法-正投影90H 平行投影法中,物体投影的大小变化与物体离投影面的远近无关。 由于正投影法在投影图上容易表达空间物体的形状和大小,作图也比较方便,因此在技术制图中得到广泛的应用。投影法中心投影法平行投影法斜投影法正投影法 常用的投影法有两大类: 中心投影法和平行投影法。 正投影的基本特性:1)唯一性 投影方向和投影面的位置确 定后,空间物体的投影是唯一的
3、,这种投影性质称为唯一性。如图。 2)类似性 三角形的投影仍为三角形;四边形的投影仍为四边形;圆形的投影为椭圆形等,如图。 3)真实性 直线或平面与投影面平行时,它们的投影反映实长或实形。 4)积聚性 A点是可见的, B点是不可见的,通常将看不见的点的投影加上括弧,如(b)。 5)等比性 直线上的点、分线段成定比,则投影也称相同的比例,AC/BC = ac/bc。 6)从属性不变 若点在直线上,则该点的投影一定在该直线的投影上。即C在AB上,则c在ab上。7)平行性不变 两平行直线的投影一 般仍平行。ABCD=abcd 2、三视图 视图 :工程制图中将人的视线比作垂直 于投影面的光线,而称正投
4、影图为视图。 V投影面正投影投射线ABPRCD20 单一正投影不能完全确定物体的形状和大小。21 两个正投影不能完全确定物体的形状和大小。22三面投影与三视图主视图俯视图左视图XYWYHZOvHWXYZ 主视图:由前向后(正面)的视图; 俯视图:由上向下(水平面)的视图; 左视图:由左向右(侧面)的视图。 25VWHx0yzy俯视(水平投影)主视(正面投影)左视(侧面投影)YXZO(一)投影面的展开与摊平:三视图之间的度量对应关系三等关系主视俯视长相等且对正主视左视高相等且平齐俯视左视宽相等且对应长对正宽相等高平齐长高宽宽第二节 点、线和面的投影bVB1B2B3一、点的投影 点是最基本的几何元
5、素,下面用点的投影说明正投影的规律。为了确定几何元素的空间位置,需要建立正投影的投影面体系。 1、投影面体系与投影轴三投影面体系: 用三个相互垂直的投影面构成投影面体系。正面投影面(V 面)水平投影面(H 面)侧面投影面(W 面)V H = OX 轴V W = OZ 轴H W = OY 轴两投影面相交,其交线称为投影轴:VHWXYOZ三投影面体系: (1) 点的投影a点A的正面投影。a点A的水平投影。a点A的侧面投影。 OXYZWaaaAVH2.点的投影及影射规律规定: 空间点用大写字母表示,点的三个投影都用同一个小写字母表示。其中H 投影不加撇,V 投影加一撇,W 投影加两撇。 OXYZWa
6、aaAVHXZ投影面展开:HVWaaZaayayaX YH YW O azxYOVHWAaaaxaa zay向右翻向下翻不动 在投影时,投影的大小不受限制,通常不必画出投影面的边框。ZaaXYH YWO axaazyaay1、V、H 两投影都反映横标,且投影连线垂直X 轴;aaOX 轴。2、V、W 两投影都反映高标,且投影连线垂直Z 轴;aaOZ 轴。3. 点的投影规律ZaaXYH YW axaazyaayOZaaXYH YW a xa3、H、W 两投影都反映纵标,投影连线是一条折线。其中W 面上的一段垂直OYW,H 面上的一段垂直OYH,中间可以O为圆心的圆弧联系起来或用折线、45。斜线联系
7、起来。azyaayOaax= aaz= y = A 到V 面的距离aax= aay= z = A 到H 面的距离aay = aaz= x = A 到W 面的距离aaZaayayaXYH YWO azx1、点的投影连线垂直于相应的投影轴。2、点的投影到投影轴的距离等于空间点到相应投影面的距离。小 结:ZaaXYH YWO axaazyaayZ YVXOHWAaaaxaa zay 例1如图所示,已知点A的正面投影 和水平投影,求其侧面投影。 解:由点的投影特性可知,aa OZ, aax= a az,故过a作直线垂直于OZ轴,交OZ轴于az,使aax=a az。 使aax=a az 的方法:以O为圆
8、心,aax为半径做圆弧交OY于点ay。 使aax=a az 的方法:也可采取作45斜线。 c例2已知点C的两个投影c和c,求作其水平投影c。cccz通过作45转宽线使ccz=ccxXZYHYwcywcyHocx作图步骤: 1)在a左方12 mm ,上方8 mm 处确定b; 2)作bbOX 轴,且在a 前10 mm 处确定b ; 3)按投影关系求得b。例3如图,已知点A 的三投影,另一点B 在点A 上方8 mm,左方12 mm,前方10 mm处,求:点B 的三个投影。 ayayZaaaxazXYH YWOabybybxbzbbb12810二、直线的投影三种位置直线投影面平行线:平行于某一个投影面
9、而对另外两个投影面倾斜的直线。投影面垂直线 :垂直于某一个投影面的直线。一般位置直线:对三个投影面都是倾斜的直线。1.投影面平行线:平行线水平线正平线侧平线bababaaabaabbabaab投影面平行线投影特性:在其平行的投影面上的投影反映实长;另外两个投影面上的投影分别平行于相应的投影轴,且长度比空间直线短。2.投影面垂直线 :垂直线铅垂线正垂线侧垂线ababa(b)a (b )a( b) ababbaba投影面垂直线投影特性在其垂直的投影面上的投影积聚为一点;另外两个投影面上的投影反映空间线段的实长,且分别垂直于相应的投影轴。3.一般位置直线:asasaszx投影特性:三个投影为倾斜线,
10、均小于实长;各投影与投影轴的夹角不反映直线对投影面的夹角。yHyWZ例4判断点C是否在线段AB上。abc因为c不在a b上,故点C 不在AB上。abcabcXoYHYW例5试在AB 线段上取一点C ,使ACCB12 , 求 :分点C 的投影。 cababcXC1B1分析:分点C 的投影,必在AB 线段的同面投影上,且 accb=accb12可用比例作图法作图。 1)过a(或b)任作一直线aB1(或bB1) ;5)过c作X轴的垂线与ab交于c 。则c 、c即所求分点C 的投影。 2)在aB1上取C1,使aC1C1B112;3)连接B1、b;4)过C1作C1cB1b,与ab交于c ;作图步骤:例6
11、已知直线EF 及点K 的二投影,试判断:点K 是否在直线EF 线上。ekfefXk 分析:应用简单比定理ekfefX作图步骤:E1 k1。k 1)在H投影上,过f(或e)任作一条直线fE1 ;2 )在fE1上取fK1=fk,K1E1=ke;3) 连接E1e,过K1作直线平行于E1e ,与fe交于k 1 ;因为已知投影 k 与k 1不重合,所以点K 不在直线EF 上。.K1.例7判断图中两条直线是否平行。 对于一般位置直线,只要有两个同面投影互相平行,空间两直线就平行。AB/CDabcdcabdXbdcacbaddbac对于特殊位置直线,只有两个同面投影互相平行,空间直线不一定平行。求出侧面投影
12、后可知:AB与CD不平行。例8判断图中两条直线是否平行。XZoYHYWabcdbacdkkX两直线相交判别方法: 若空间两直线相交,则其同面投影必相交,且交点的投影必符合空间一点的投影规律。交点是两直线的共有点HVABCDKabcdkabckdX 相交两直线的三面投影:投影面垂直面:只垂直于某一个投影面而对另外两个投影面倾斜的平面。投影面平行面:平行于某一个投影面的平面。一般位置平面:对三个投影面都倾斜的平面。二、直线的投影1.投影面垂直面:abcabcabc铅垂面正垂面侧垂面xzyHyWcbacbcbaaxxxcbbcabcabcacbababc投影面垂直面的投影特性在其垂直的投影面上的投影
13、积聚成与该投影面内的两根投影轴倾斜的直线;另外两个投影面上的投影为空间平面的类似形。2.投影面平行面:侧平面水平面正平面abcabca b c zxyWyHabcbcbaxacbacbacacbccbaaabcb投影面平行面的投影特性:在其平行的投影面上的投影反映平面实形;另外两个投影面上的投影积聚为直线,且平行于相应的投影轴。3.一般位置平面:一般位置平面的投影特性:平面与三个投影面都倾斜,三个投影为类似形。各投影不反映平面对投影面倾角的大小abcbcamnnm例9已知平面由直线AB、AC所确定, 试在平面内任作一条直线。解:根据直线上点的投影必在直线的投影上例10已知K点在平面ABC上,求
14、K点 的水平投影。baccakbabcabkcdd利用平面的积聚性求解通过在面内作辅助线求解kk 各种机械设备都是有若干个基本形体组成。第三节 基本形体的视图 平面体:由平面围成的基本形体。曲面体:以曲面为其主要表面的基本形体。 一、平面体的视图 表面均为平面构成的立体称为平面体,平面立体上相邻两表面的交线称为棱线。棱柱棱锥1. 棱 柱77六棱柱各面的投影特点:1、分析六个侧棱面的投影特点2、分析上、下底面的投影特点表面上取点mmm2.棱 锥WHVBACSMabcssabcsa(c)b平面上取点mmm方法一:方法二:二、 回转体(曲面立体)的视图 表面由曲面或曲面和平面构成的立体称为曲面体。注
15、意要分清最前、最后、最左、最右素线。圆柱圆锥圆球1. 圆 柱 圆柱由圆柱面、顶面、底面所围成。圆柱面可看作直线绕与它相平行的轴线旋转而成。 面上取点:aabccdabcd1122Fbd2. 圆 锥 圆锥由圆锥面、底面所围成。圆锥面可看作直线绕与它相交的轴线旋转而成。abcdsasbc(d)s”c”d”a”(b”)111面上取点:mmm” 面上取线的方法(素线法)方法一:方法二:围圆法M3. 圆 球 球是由球面围成的。球面可看作圆绕其直径为轴线旋转而成。 面上取点:111()()Aa思考:如何求A点的其余投影用围圆法4.圆环构成:圆环面圆母线绕不通过圆心,但在同一平面上的轴线回转而成。投影分析:
16、俯视图中的最大圆和喉圆分别是母线圆上的B、D点绕轴线回转而成,点划线圆是母线圆的圆心轨迹的投影。 主视图是最左、最右素线圆及母线圆上A、C点轨迹的投影;而左视图是最前、最后素线圆及母线圆上A、C点轨迹的投影。作图方法:先画圆的中心线及回转轴线,再画各圆的投影三、不完整的基本形体和截交线 不完整的基本形体是由平面同立体相交,并切割立体后形成的,这个平面称为“切平面”;它切割立体时与立体表面的交接称为“截交”;截交的交线称为“截交线”。 平面与立体相交在立体表面产生交线称为截交线,该平面称为截平面。截交线具有封闭性和共有性。截平面截交线截交线的概念1.平面与平面体相交例11 三棱锥被一正垂面所截切
17、,求截交线的投影。sa b c asbcs a(c)bBA1231yy231232. 平面与曲面体相交(1) 平面与圆柱相交 截平面平行于轴线, 交线为平行于轴线的 两条平行直线截平面倾斜于轴线,交线为 椭圆截平面垂直于轴线,交线为 圆平面与圆柱的截交线例12 求斜切圆柱的截交线。解题步骤1. 分析 截交线的水平投影为椭圆,侧面投影为圆;2. 求出截交线上的特殊点、 、 ;3. 求出若干个一般点、 、;4. 光滑且顺次地连接各点,作出截交线,并且判别可见性;解:1114322265433(4)5656877878作图步骤:(1)根据截平面位置与曲面立体表面的性质、判别截交线的形状和性质。(2)
18、求出截交线上的特殊点。(3)根据需要求出若干个一般点。(4)光滑且顺次地连接各点,作出截交线,并且判别可见性。(5)最后,补全可见与不可见部分的轮廓线或转向轮廓素线,并擦除被切割掉的轮廓线或转向轮廓素线。特 殊 点:是指绘制曲线时有影响的各种点。极限位置点:曲线的最高、最低、最前、最后、最左和最右点。特征点:曲线本身具有特征的点,如椭圆长短轴上四个端点。例13 求切口圆柱的水平投影和侧面投影。解题步骤1.分析2.求出截交线上的特殊点 1、2、 3、 4;3.光滑且顺次地连接各点,作出截交线,并且判别可见性;4.整理轮廓线。31243124例14 求截切圆柱的水平投影和侧面投影。解题步骤1.分析
19、 截交线的水平投影为圆的一部分,侧面投影为矩形;2.求出截交线上的特殊点、;3.顺次地连接各点,作出截交线并判别可见性;4.整理轮廓线。(2)平面与圆锥相交圆椭圆两条相交直线双曲线抛物线一、组合体的表面交线相贯:立体同立体相互交接。相贯线:因相贯而产生的表面交线。形体相贯的形式:形体相交、若干形体叠加、形体挖切。第四节 组合体的视图有实线1.相贯和相贯线有实线有虚线无线不相切有线相切无线表面相切无线表面相交有线2 .两圆柱体相贯及其相贯线相贯线简化画法DR=D/2相贯线性质图例求两曲面立体的相贯线yyyydedeacbabcdebac分 析求特殊点求一般点判别可见性完成相贯线表面取点法求作相贯
20、线的一般步骤(1)分析 首先分析两曲面立体的几何形状、相对大小和相对位置,进一步分析相贯线是空间曲线还是处于特殊情况(平面曲线或直线)。(2)求特殊点 相贯线上的特殊点包括极限位置点、轮廓转向点、曲线特征点和结合点四种。() 根据需要求出若干个一般点。()判别可见性,顺次光滑连接各点,作出相贯线。()补全可见与不可见部分的轮廓线或转向轮廓线,并擦除被切割掉的轮廓线或转向轮廓线。 两外表面相交外表面与内表面相交两内表面相交两正交圆柱的相贯线两正交圆柱的相贯线两正交圆柱的相贯线3.过渡线 在铸件、锻件的相邻表面交界处,一般都有圆角过渡而没有明显的交线。为了便于分清形体的界限,还是按照没有圆角过渡的
21、情况画出表面交线的投影,但其两端只画到两相邻表面轮廓的交点附近,使之同过渡圆角轮廓线之间保持一定的间隙 ,以区别于一般的相贯线,这种线称为过渡线。 分解形体套筒底板支撑板肋板二、 组合体视图的画法 1.形体分析一、叠加式组合体轴承座三视图.选择主视图的投射方向原则: (1)形状特征; (2)自然安放位置; (3)尽量减少其他视图中的虚线, 使图幅的布 局匀称合理。 B 向符合原则3.画底稿(1)布置视图(2)逐个画各形体的三视图画对称中心线、轴线及定位基准线先整体,后局部。先定位置,后定形状。 画底板 画套筒 画支承板 画肋板4. 检查、描深作导向块的三视图 形体分析作图时注意分析P面的投影P二、切割式组合体视图的画法第四节 读组合体视图一、读图的基本要领1.几个视图结合起来一起读,抓特
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024新疆农信社校园招聘沟通方案【招聘】
- 2024-2025年学生会外联部个人总结范文(28篇)
- 辽宁工程技术大学就业协议书
- 非全就业协议书
- 合同书面设置标准规范
- 合同审签工作总结
- 篮球教学课件
- 短跑 (体育本科专业)课件
- 《种子商品与市场》课件
- 《人事助理自我介绍》课件
- 中建型钢混凝土结构施工方案
- 2022年全国应急普法知识竞赛试题库大全-上(单选题库-共4部分-1)
- 2024年厂长岗位聘用合同范本版B版
- 船用动力系统电气化改造实践
- 木制品加工销售承包协议
- 实+用法律基础-形成性考核任务三-国开(ZJ)-参考资料
- 汽车修理厂喷漆合作合同
- 模拟法庭课件教学课件
- 吉林师范大学《微积分》2021-2022学年第一学期期末试卷
- JJF(浙) 1134-2017 微米千分尺校准规范
- 教科版2022-2023学年度上学期三年级科学上册期末测试卷及答案(含八套题)
评论
0/150
提交评论