分布函数以及其基本性质_第1页
分布函数以及其基本性质_第2页
分布函数以及其基本性质_第3页
分布函数以及其基本性质_第4页
分布函数以及其基本性质_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、关于分布函数及其基本性质第一张,PPT共二十页,创作于2022年6月 为了对离散型的和连续型的随机变量以及更广泛类型的随机变量给出一种统一的描述方法,引进了分布函数的概念. f (x)xo0.10.30.6kPK012第二张,PPT共二十页,创作于2022年6月 |x定义:设 X 是一个随机变量,称为 X 的分布函数. 记作 X F(x) 或 FX(x). 如果将 X 看作数轴上随机点的坐标,那么分布函数 F(x) 的值就表示 X落在区间的概率.第三张,PPT共二十页,创作于2022年6月说明 X是随机变量, x是参变量。 F(x) 是随机变量X取值不大于 x 的概率。 由定义,对任意实数 x

2、1x2,随机点落在区间( x1 , x2 的概率为:P x1X x2 = P X x2 - P X x1 = F(x2)-F(x1)第四张,PPT共二十页,创作于2022年6月离散型随机变量分布函数的计算设离散型随机变量分布律为PX=xk=pk,k=1,2,由概率的可列可加性得X的分布函数为F(x)= PXx=PXxk=pk这里和式是对于所有满足xkx的k求和.第五张,PPT共二十页,创作于2022年6月当 x0 时, X x = , 故 F(x) =0例1,求 F(x).当 0 x 1 时, F(x) = P(X x) = P(X=0) =F(x) = P(X x)解:第六张,PPT共二十页

3、,创作于2022年6月当 1 x 2 时, F(x) = P(X=0) + P(X=1) + P(X=2) = 1第七张,PPT共二十页,创作于2022年6月 不难看出,F(x) 的图形是阶梯状的图形,在 x=0,1,2 处有跳跃,其跃度分别等于 P(X=0) , P(X=1) , P(X=2).第八张,PPT共二十页,创作于2022年6月已知 X 的分布律为求X的分布函数,并画出它的图形。第九张,PPT共二十页,创作于2022年6月-11230.250.51xF(x)F(x)的示意图第十张,PPT共二十页,创作于2022年6月 引进分布函数F(x)后,事件的概率都可以用F(x)的函数值来表示

4、。P(Xb)=F(b)P(aXb)=F(b)-F(a)P(Xb)=1-P(Xb)=1 - F(b)P(aXb)=P(X b)-P(Xa)= F(b)- F(a)第十一张,PPT共二十页,创作于2022年6月例:设随机变量X的分布律为求X的分布函数,并求PX1/2,P3/2X 5/2,P2 X 3.解:由概率的有限可加性得即 PX1/2=F(1/2)=1/4 P3/2X 5/2 =F(5/2)-F(3/2) =3/4 -1/4=1/2 P2 X 3 = F(3)-F(2)+PX=2 =1-1/4+1/2=3/4第十二张,PPT共二十页,创作于2022年6月解 (1) 第十三张,PPT共二十页,创

5、作于2022年6月(2) 第十四张,PPT共二十页,创作于2022年6月分布函数的性质 第十五张,PPT共二十页,创作于2022年6月试说明F(x)能否是某个随机变量的分布函数.例 设有函数 F(x)解: 注意到函数 F(x)在 上下降,不满足性质(1),故F(x)不能是分布函数.不满足性质(2), 可见F(x)也不能是随机变量的分布函数.或者第十六张,PPT共二十页,创作于2022年6月 例 在区间 0,a 上任意投掷一个质点,以 X 表示这个质点的坐标. 设这个质点落在 0, a中任意小区间内的概率与这个小区间的长度成正比,试求 X 的分布函数. 解:设 F(x) 为 X 的分布函数,当 x a 时,F(x) =1第十七张,PPT共二十页,创作于2022年6月当 0 x a 时, P(0 X x) = kx (k为常数 )由于 P(0 X a) = 1 ka=1,k =1/a F(x) = P(X x) = P(X0) + P(0 X x)=x / a第十八张,PPT共二十页,创作于2022年6月问一问是不是某一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论