版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数()的部分图象如图所示.则( )ABCD2一个由两个圆柱组合而成的密闭容器内装有部分液
2、体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则( )ABCD3已知函数满足,且,则不等式的解集为( )ABCD4如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则( )ABCD5博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾某嘉宾突发奇想,设计两种乘车方案方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )AP1P2BP1P2C
3、P1+P2DP1P26若复数()是纯虚数,则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限7已知的垂心为,且是的中点,则( )A14B12C10D88在平面直角坐标系中,已知点,若动点满足 ,则的取值范围是( )ABCD9已知复数(为虚数单位),则下列说法正确的是( )A的虚部为B复数在复平面内对应的点位于第三象限C的共轭复数D10已知函数是定义域为的偶函数,且满足,当时,则函数在区间上零点的个数为( )A9B10C18D2011已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A2B5CD12已知复数,其中
4、,是虚数单位,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设、分别为椭圆:的左、右两个焦点,过作斜率为1的直线,交于、两点,则_14设函数,若在上的最大值为,则_.15的二项展开式中,含项的系数为_16已知一个圆锥的底面积和侧面积分别为和,则该圆锥的体积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数当时,求不等式的解集;,求a的取值范围18(12分)已知椭圆的离心率为,且过点,点在第一象限,为左顶点,为下顶点,交轴于点,交轴于点.(1)求椭圆的标准方程;(2)若,求点的坐标.19(12分)某机构组织的家庭教育活动上有一个游戏,每
5、次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四个数字的一种排列定义随机变量X(xAyA)2+(xByB)2+(xCyC)2+(xDyD)2,用X来衡量家长对小孩饮食习惯的了解程度(1)若参与游戏的家长对小孩的饮食习惯完全不了解()求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;()求X的分布列(简要说明方法,不用写
6、出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X4,请判断这位家长对小孩饮食习惯是否了解,说明理由20(12分)已知分别是的内角的对边,且()求()若,求的面积()在()的条件下,求的值21(12分)已知函数,(1)讨论的单调性;(2)若在定义域内有且仅有一个零点,且此时恒成立,求实数m的取值范围.22(10分)如图,在三棱柱中,平面平面,侧面为平行四边形,侧面为正方形,为的中点.(1)求证:平面;(2)求二面角的大小.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】由图象可知,可解得,利用三
7、角恒等变换化简解析式可得,令,即可求得.【详解】依题意,即,解得;因为所以,当时,.故选:C.【点睛】本题主要考查了由三角函数的图象求解析式和已知函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.2B【解析】根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.3B【解析】构造函数,利用导数研究函数的单调性,即可得到结论.【详解】设,则函数的导数,,即函数为减函数,,则不等式等价为,则不等式的解集为,即的解为,由得或,解得或,故不等式的解集为.故选:.【点
8、睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.4B【解析】,将,代入化简即可.【详解】.故选:B.【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.5C【解析】将三辆车的出车可能顺序一一列出,找出符合条件的即可.【详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1;方案二坐车可能:312、321,所以,P1;所以P1+P2故选C.【点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个
9、数,属于基础题.6B【解析】化简复数,由它是纯虚数,求得,从而确定对应的点的坐标【详解】是纯虚数,则,对应点为,在第二象限故选:B【点睛】本题考查复数的除法运算,考查复数的概念与几何意义本题属于基础题7A【解析】由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而, 所以,因为是的中点,所以故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.8D【解析】设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设 ,则, 为点的轨迹方程点的参数方
10、程为(为参数) 则由向量的坐标表达式有:又故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:直接法;定义法;相关点法;参数法;待定系数法9D【解析】利用的周期性先将复数化简为即可得到答案.【详解】因为,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.10B【解析】由已知可得函数f(x)的周期与对称轴,函数F(x
11、)f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,作出函数f(x)与g(x)的图象如图,数形结合即可得到答案.【详解】函数F(x)f(x)在区间上零点的个数等价于函数f(x)与g(x)图象在上交点的个数,由f(x)f (2x),得函数f(x)图象关于x1对称,f(x)为偶函数,取xx+2,可得f(x+2)f(x)f(x),得函数周期为2.又当x0,1时,f(x)x,且f(x)为偶函数,当x1,0时,f(x)x,g(x),作出函数f(x)与g(x)的图象如图:由图可知,两函数图象共10个交点,即函数F(x)f(x)在区间上零点的个数为10.故选:B.【点睛】本题考查函数
12、的零点与方程根的关系,考查数学转化思想方法与数形结合的解题思想方法,属于中档题.11D【解析】根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.12D【解析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由椭圆的标准方程,求出焦点的坐标,写出直线方程,与椭圆方程联立,求出弦长,利用定义可得,进而求出。【详解】由知,焦点,所
13、以直线:,代入得,即,设, ,故 由定义有,所以。【点睛】本题主要考查椭圆的定义、椭圆的简单几何性质、以及直线与椭圆位置关系中弦长的求法,注意直线过焦点,位置特殊,采取合适的弦长公式,简化运算。14【解析】求出函数的导数,由在上,可得在上单调递增,则函数最大值为,即可求出参数的值.【详解】解:定义域为,在上单调递增,故在上的最大值为故答案为:【点睛】本题考查利用导数研究函数的单调性与最值,属于基础题.15【解析】写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:【点睛】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题
14、.16【解析】依据圆锥的底面积和侧面积公式,求出底面半径和母线长,再根据勾股定理求出圆锥的高,最后利用圆锥的体积公式求出体积。【详解】设圆锥的底面半径为,母线长为,高为,所以有 解得, 故该圆锥的体积为。【点睛】本题主要考查圆锥的底面积、侧面积和体积公式的应用。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1); (2).【解析】(1)当时,当时,令,即,解得,当时,显然成立,所以,当时,令,即,解得,综上所述,不等式的解集为(2)因为,因为,有成立,所以只需,解得,所以a的取值范围为【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;
15、法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想18(1);(2)【解析】(1)由题意得,求出,进而可得到椭圆的方程;(2)由(1)知点,坐标,设直线的方程为,易知,可得点的坐标为,联立方程,得到关于的一元二次方程,结合根与系数关系,可用表示的坐标,进而由三点共线,即,可用表示的坐标,再结合,可建立方程,从而求出的值,即可求得点的坐标.【详解】(1)由题意得,解得,所以椭圆的方程为.(2)由(1)知点,由题意可设直线的斜率为,则,所以直线的方程为,则点的坐标为,联立方程,消去得:.设,则,所以,所以,所以.设点的坐标为,因为点三
16、点共线,所以,即,所以,所以.因为,所以,即,所以,解得,又,所以符合题意,计算可得,故点的坐标为.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查平行线的性质,考查学生的计算求解能力,属于难题.19(1)()()分布表见解析;(2)理由见解析【解析】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,家长的排序有种等可能结果,利用列举法求出其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,由此能求出他们在一轮游戏中,对四种食物排出的序号完全不同的概率(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况
17、,由此能求出X的分布列(2)假设家长对小孩的饮食习惯完全不了解,在一轮游戏中,P(X4)=P(X=0)+ P(X=2)=,三轮游戏结果都满足“X4”的概率为,这个结果发生的可能性很小,从而这位家长对小孩饮食习惯比较了解【详解】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为xA,xB,xC,xD为1234的情况,家长的排序有24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:2143,2341,2413,3142,3412,3421,4123,4312,4321,家长的排序与对应位置的数字完全不同的概率P基小孩
18、对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序xA,xB,xC,xD为1423的情况,四种食物按1234的排列为ACDB,再研究yAyByCyD的情况即可,其实这样处理后与第一种情况的计算结果是一致的,他们在一轮游戏中,对四种食物排出的序号完全不同的概率为(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表: X 02 4 6 8 10 12 14 16 18 20 P (2)这位家长对小孩的饮食习惯比较了解理由如下:假设家长对小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X4)P(X0)+P(X2),三轮游戏结果都满足“X4”的概率为()3,这个结果发生的可能性很小,这位家长对小孩饮食习惯比较了解【点睛】本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是中档题20();();().【解析】()由已知结合正弦定理先进行代换,然后结合和差角公式及正弦定理可求;()由余弦定理可求,然后结合三角形的面积公式可求;()结合二倍角公式及和角余弦公式即可求解【详解】()因为,所以,所以,由正弦定理可得,;()由余弦定理可得,整理可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度人工智能产业贷款抵押合同
- 二零二五年度测绘工程师保密合同(基础设施测绘)
- 二零二五年度旅游纪念品销售总额提成与地方特色合作合同
- 2025年度企业贷款合同风险管理指南
- 二零二五年度农产品电商平台与农村电商基础设施建设合同4篇
- 2025年度酒店租赁合同(年度更新版)
- 二零二五年度城市轨道交通施工承包合同12篇
- 2025年度内衣服装类线上线下融合销售合同范本4篇
- 2025年度个人房产租赁合同终止及退租协议范本
- 2025年度南京市房地产抵押物抵押合同4篇
- GB/T 43650-2024野生动物及其制品DNA物种鉴定技术规程
- 2024年南京铁道职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 暴发性心肌炎查房
- 口腔医学中的人工智能应用培训课件
- 工程质保金返还审批单
- 【可行性报告】2023年电动自行车项目可行性研究分析报告
- 五月天歌词全集
- 商品退换货申请表模板
- 实习单位鉴定表(模板)
- 数字媒体应用技术专业调研方案
- 2023年常州市新课结束考试九年级数学试卷(含答案)
评论
0/150
提交评论