湖北省华中师范大学东湖开发区第一2021-2022学年高考适应性考试数学试卷含解析_第1页
湖北省华中师范大学东湖开发区第一2021-2022学年高考适应性考试数学试卷含解析_第2页
湖北省华中师范大学东湖开发区第一2021-2022学年高考适应性考试数学试卷含解析_第3页
湖北省华中师范大学东湖开发区第一2021-2022学年高考适应性考试数学试卷含解析_第4页
湖北省华中师范大学东湖开发区第一2021-2022学年高考适应性考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,若,则的最小值是( )A1B2C3D42设,则、的大小关系为( )ABCD3已知复数满足,其中是虚数单位,则复数在

2、复平面中对应的点到原点的距离为( )ABCD4已知定义在上的函数,若函数为偶函数,且对任意, ,都有,若,则实数的取值范围是( )ABCD5已知数列为等差数列,为其前项和,则( )A7B14C28D846设函数,若函数有三个零点,则()A12B11C6D37椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是( )ABCD8若,则“”是 “”的( )A

3、充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件9甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )A8B7C6D510某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A互联网行业从业人员中90后占一半以上B互联网行业中从事技术岗位的人数超过总人数的C互联网行业中从事运营岗

4、位的人数90后比80前多D互联网行业中从事技术岗位的人数90后比80后多11已知下列命题:“”的否定是“”;已知为两个命题,若“”为假命题,则“”为真命题;“”是“”的充分不必要条件;“若,则且”的逆否命题为真命题.其中真命题的序号为( )ABCD12阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:红楼梦、三国演义、水浒传及西游记,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( )A120种B240种C480种D600种二、填空题:本题共4小题,每小题5分,共20分。13已知函数恰好有3个不同的零点,则实数的取值

5、范围为_14已知实数a,b,c满足,则的最小值是_.15函数的图象在处的切线与直线互相垂直,则_16在平面直角坐标系中,曲线在点处的切线与x轴相交于点A,其中e为自然对数的底数.若点,的面积为3,则的值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.18(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜

6、时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.

7、2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.19(12分)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线和直线的极坐标方程分别是()和(),其中().(1)写出曲线的直角坐标方程;(2)设直线和直线分别与曲线交于除极点的另外点,求的面积最小值.

8、20(12分)已知抛物线的准线过椭圆C:(ab0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.(1)求椭圆C的标准方程;(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.21(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.22(10分)已知函数(1)若函数有且只有一个零点,求实数的取值范围;(2)若函数对恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

9、的。1C【解析】设直线AB的方程为,代入得:,由根与系数的关系得,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.【详解】根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,设直线AB的方程为,代入得:.由根与系数的关系得,所以.又直线CD的方程为,同理,所以,所以.故.过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得.所以,当Q,P,M三点共线时,等号成立.故选:C.【点睛】本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.2D【解析】因为,所以且在上单调递减,且

10、 所以,所以,又因为,所以,所以.故选:D.【点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.3B【解析】利用复数的除法运算化简z, 复数在复平面中对应的点到原点的距离为利用模长公式即得解.【详解】由题意知复数在复平面中对应的点到原点的距离为故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.4A【解析】根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称

11、,因为对任意, ,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.【点睛】本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.5D【解析】利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【详解】,解得故选:D【点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.6B【解析】画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果【详解】作出函数的图象如图所示,令,由图可得关于的方程的解有两个或三个(时有三个,时有两个),所以关于的方程只能有一个根(若

12、有两个根,则关于的方程有四个或五个根),由,可得的值分别为,则故选B【点睛】本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.7C【解析】根据题意可知当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大,由椭圆的几何性质即可确定此时椭圆的离心率,进而确定离心率的取值范围.【详解】当玻璃杯倾斜至杯中水刚好不溢出时,水面边界所形成椭圆的离心率最大.此时椭圆长轴长为,短轴长为6,所以椭圆离心率,所以.故选:C【点睛】本题考查了橢圆的定义及其性质的简单应用,属于基础题.8A【解析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,

13、推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.9B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙); A(甲,丁)B(丙)C(乙); A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共

14、7种,选B. 10D【解析】根据两个图形的数据进行观察比较,即可判断各选项的真假【详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多故选:D

15、.【点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.11B【解析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础12B【解析】首先将五天进行分组,再对名著进行分配,根据分步乘法计数原理求得结果.【详解】将周一至周五

16、分为组,每组至少天,共有:种分组方法;将四大名著安排到组中,每组种名著,共有:种分配方法;由分步乘法计数原理可得不同的阅读计划共有:种本题正确选项:【点睛】本题考查排列组合中的分组分配问题,涉及到分步乘法计数原理的应用,易错点是忽略分组中涉及到的平均分组问题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【详解】解:恰好有3个不同的零点恰有三个根,令,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【点睛】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.14【解析】先

17、分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【详解】解:若取最小值,则异号,根据题意得:,又由,即有,则,即的最小值为,故答案为:【点睛】本题考查了基本不等式以及二次函数配方求最值,属于中档题.151.【解析】求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可【详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率 本题正确结果:【点睛】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键16【解析】对求导,再根据点的坐标可得切线方程,令,可得点横坐标,由的面积为3,求解即得.【详解】由题,切线斜率,则切线

18、方程为,令,解得,又的面积为3,解得.故答案为:【点睛】本题考查利用导数研究函数的切线,难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1)由公比表示出,由成等差数列可求得,从而数列的通项公式;(2)求(1)得,然后对和式两两并项后利用等差数列的前项和公式可求解【详解】(1)是等比数列,且成等差数列,即,解得:或,(2)【点睛】本题考查等比数列的通项公式,考查并项求和法及等差数列的项和公式本题求数列通项公式所用方法为基本量法,求和是用并项求和法数列的求和除公式法外,还有错位相关法、裂项相消法、分组(并项)求和法等等18(1)见解析;(2)(i)

19、该农场若采用延长光照时间的方法,预计每年的利润为426千元;(ii)若采用降低夜间温度的方法,预计每年的利润为424千元;(3)分布列见解析,.【解析】(1)估计第一组数据平均数和第二组数据平均数来选择.(2)对于两种方法,先计算出每亩平均产量,再算农场一年的利润.(3)估计频率分布直方图可知,增产明显的大棚间数为5间,由题意可知,的可能取值有0,1,2,3,再算出相应的概率,写出分布列,再求期望.【详解】(1)第一组数据平均数为千斤/亩,第二组数据平均数为千斤/亩,可知第一组方法较好,所以采用延长光照时间的方法;(2)(i)对于采用延长光照时间的方法:每亩平均产量为千斤.该农场一年的利润为千

20、元.(ii)对于采用降低夜间温度的方法:每亩平均产量为千斤,该农场一年的利润为千元.因此,该农场若采用延长光照时间的方法,预计每年的利润为426千元;若采用降低夜间温度的方法,预计每年的利润为424千元.(3)由图可知,增产明显的大棚间数为5间,由题意可知,的可能取值有0,1,2,3,;.所以的分布列为0123所以.【点睛】本题主要考查样本估计总体和离散型随机变量的分布列,还考查了数据处理和运算求解的能力,属于中档题.19(1);(2)16.【解析】(1)将极坐标方程化为直角坐标方程即可;(2)利用极径的几何意义,联立曲线,直线,直线的极坐标方程,得出,利用三角形面积公式,结合正弦函数的性质,

21、得出的面积最小值.【详解】(1)曲线:,即化为直角坐标方程为:;(2),即同理当且仅当,即()时取等号即的面积最小值为16【点睛】本题主要考查了极坐标方程化直角坐标方程以及极坐标的应用,属于中档题.20(1);(2)或.【解析】(1)由抛物线的准线方程求出的值,确定左焦点坐标,再由点F到直线l:的距离为4,求出即可;(2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【详解】(1)抛物线的准线方程为,直线,点F到直线l的距离为,所以椭圆的标准方程为;(2)依题意斜率不为0,又过点,设方程为,联立,消去得,设,线段AB的中垂线交直线l于点Q,所以横坐标为3,平方整理得,解得或(舍去),所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论