版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列函数中,值域为R且为奇函数的是( )ABCD2已知函数满足,且,则不等式的解集为( )ABCD3给出个数 ,其规律是:第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和现已给出了该问题算法的
2、程序框图如图,请在图中判断框中的处和执行框中的处填上合适的语句,使之能完成该题算法功能( )A;B;C;D;4如图,在平行四边形中,对角线与交于点,且,则( )ABCD5水平放置的,用斜二测画法作出的直观图是如图所示的,其中 ,则绕AB所在直线旋转一周后形成的几何体的表面积为( )ABCD6已知,则( )A5BC13D7已知锐角满足则( )ABCD8半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网
3、格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )ABCD9已知函数,则不等式的解集是( )ABCD10已知函数为奇函数,则( )AB1C2D311若,则“”是 “”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件12已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,且,则的最小值为_14若,则的最小值为_.15在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点若以AB为直径的圆与圆x2(y2)21相外切,且
4、APB的大小恒为定值,则线段OP的长为_16在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的准线方程为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值18(12分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.19(12分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设
5、备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.维修次数23456甲设备5103050乙设备05151515(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.20(12分)如图,在等腰梯形中,ADBC,分别为,的中点,以为折痕将折起,使点到达点位置(平面)(1)若为直线上任意一点,
6、证明:MH平面;(2)若直线与直线所成角为,求二面角的余弦值21(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为(为参数).()求曲线C1和C2的极坐标方程:()设射线=(0)分别与曲线C1和C2相交于A,B两点,求|AB|的值22(10分)在中,为边上一点,.(1)求;(2)若,求.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】依次判断函数的值域和奇偶性得到答案.【详解】A. ,值域为,非奇非偶函数,排除; B.
7、,值域为,奇函数,排除;C. ,值域为,奇函数,满足; D. ,值域为,非奇非偶函数,排除;故选:.【点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用.2B【解析】构造函数,利用导数研究函数的单调性,即可得到结论.【详解】设,则函数的导数,,即函数为减函数,,则不等式等价为,则不等式的解集为,即的解为,由得或,解得或,故不等式的解集为.故选:.【点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.3A【解析】要计算这个数的和,这就需要循环50次,这样可以确定判断语句,根据累加最的变化规律可以确定语句.【详解】因为计算
8、这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句应为,第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,这样可以确定语句为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.4C【解析】画出图形,以为基底将向量进行分解后可得结果【详解】画出图形,如下图选取为基底,则,故选C【点睛】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算5B【解析】根据斜二
9、测画法的基本原理,将平面直观图还原为原几何图形,可得,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【详解】根据“斜二测画法”可得,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,它的表面积为.故选:【点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.6C【解析】先化简复数,再求,最后求即可.【详解】解:,故选:C【点睛】考查复数的运算,是基础题.7C【解析】利用代入计算即可.【详解】由已知,因为锐角,所以,即.故选:C.【点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道
10、基础题.8D【解析】根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.9B【解析】由导数确定函数的单调性,利用函数单调性解不等式即可.【详解】函数,可得,时,单调递增,故不等式的解集等价于不等式的解集故选:B【点睛】
11、本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.10B【解析】根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.11A【解析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【点睛】易出现的错
12、误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.12D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为考点:二项式系数,二项式系数和二、填空题:本题共4小题,每小题5分,共20分。13【解析】由,先将变形为,运用基本不等式可得最小值,再求的最小值,运用函数单调性即可得到所求值.【详解】解:因为,且,所以 因为,所以 ,当且仅当时,取等号,所以 令,则,令,则,所以函数在上单调递增,所以所以则所求最小值为故答案为: 【点睛】此题考查基本不等式的运用:求最值,注意变形和满
13、足的条件:一正二定三相等,考查利用单调性求最值,考查化简和运算能力,属于中档题.14【解析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。【详解】由题意,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值【点睛】利用基本不等式求最值必须具备三个条件:各项都是正数;和(或积)为定值;等号取得的条件。15【解析】分析:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),利用差角的正切公式,结合以AB为直径的圆与圆x2+(y-2)2=1相外切且APB的大小恒为定值,即可求出线段OP的长详解:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),则
14、APB的大小恒为定值,t,|OP|=故答案为点睛:本题考查圆与圆的位置关系,考查差角的正切公式,考查学生的计算能力,属于中档题16【解析】代入求解得,再求准线方程即可.【详解】解:双曲线经过点,解得,即又,故该双曲线的准线方程为: 故答案为:【点睛】本题主要考查了双曲线的准线方程求解,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2),最大值【解析】(1)先证明,故平面ADC由,即得证;(2)可证明平面ABC,结合条件表示出,利用均值不等式,即得解.【详解】(1)证明:四边形DCBE为平行四边形,平面ABC,平面ABC,AB是圆O的直径,且,平面A
15、DC,平面ADC,平面ADC(2)解平面ABC,平面ABC在中,在中,当且仅当,即时取等号,当时,体积有最大值【点睛】本题考查了线面垂直的证明和三棱锥的体积,考查了学生逻辑推理,空间想象,转化划归,数学运算的能力,属于中档题.18(1)或(2)【解析】(1)分类讨论去绝对值即可;(2)根据条件分a3和a3两种情况,由2,1A建立关于a的不等式,然后求出a的取值范围.【详解】(1)当a1时,f(x)|x+1|.f(x)|2x+1|1,当x1时,原不等式可化为x12x2,x1;当时,原不等式可化为x+12x2,x1,此时不等式无解;当时,原不等式可化为x+12x,x1,综上,原不等式的解集为x|x
16、1或x1.(2)当a3时,函数g(x)的值域Ax|3+axa3.2,1A,a5;当a3时,函数g(x)的值域Ax|a3x3+a.2,1A,a1,综上,a的取值范围为(,51,+).【点睛】本题考查了绝对值不等式的解法和利用集合间的关于求参数的取值范围,考查了转化思想和分类讨论思想,属于中档题.19(1)分布列见解析,分布列见解析;(2)甲设备,理由见解析【解析】(1)的可能取值为10000,11000,12000,的可能取值为9000,10000,11000,12000,计算概率得到分布列;(2)计算期望,得到,设甲、乙两设备一年内的维修次数分别为,计算分布列,计算数学期望得到答案.【详解】(
17、1)的可能取值为10000,11000,12000,因此的分布如下100001100012000的可能取值为9000,10000,11000,12000,因此的分布列为如下9000100001100012000(2)设甲、乙两设备一年内的维修次数分别为,的可能取值为2,3,4,5,则的分布列为2345的可能取值为3,4,5,6,则的分布列为3456由于,因此需购买甲设备【点睛】本题考查了数学期望和分布列,意在考查学生的计算能力和应用能力.20(1)见解析(2)【解析】(1)根据中位线证明平面平面,即可证明MH平面;(2)以,为,轴建立空间直角坐标系,找到点的坐标代入公式即可计算二面角的余弦值.【详解】(1)证明:连接,分别为,的中点,又平面,平面,平面,同理,平面,平面,平面,平面平面,平面,平面(2)连接,在和中,由余弦定理可得,由与互补,可解得,于是,直线与直线所成角为,又,即,平面,平面平面,为中点,平面,如图所示,分别以,为,轴建立空间直角坐标系,则,设平面的法向量为,即令,则,可得平面的一个法向量为又平面的一个法向量为,二面角的余弦值为【点睛】此题考查线面平行,建系通过坐标求二面角等知识点,属于一般性题目.21(),;()【解析】()根据,可得曲线C1的极坐标方程,然后先计算曲线C2的普通方程,最后根据极坐标与直角坐标的转化公式,可得结果.()将射线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工程项目协议条款与监管办法
- SaaS平台定制技术开发服务协议
- 2023-2024学年重庆市永川北山中学高三二轮检测试题(二模)数学试题试卷
- 2024定制出租车辆运营协议典范
- 2024年履约担保协议范本下载指南
- 2024锅炉维修工程协议格式
- 2024年度汽车租赁协议格式
- 2024商业秘密保护竞业限制协议样本
- 2024年仓库转租协议条款
- 动产资产抵押协议范例2024年
- GB/T 9452-2023热处理炉有效加热区测定方法
- 停车场施工方案及技术措施范本
- 高考地理一轮复习课件【知识精讲+高效课堂】美食与地理环境关系
- 分居声明告知书范本
- 2023年04月山东济南市槐荫区残联公开招聘残疾人工作“一专两员”公开招聘笔试参考题库+答案解析
- 消失的13级台阶
- 营销管理知识点
- 船体强度与结构设计课程设计
- 不宁腿综合征诊断与治疗
- 初中英语教学活动设计
- 三写作的载体与受体
评论
0/150
提交评论