福建省云霄立人学校2021-2022学年高三第二次调研数学试卷含解析_第1页
福建省云霄立人学校2021-2022学年高三第二次调研数学试卷含解析_第2页
福建省云霄立人学校2021-2022学年高三第二次调研数学试卷含解析_第3页
福建省云霄立人学校2021-2022学年高三第二次调研数学试卷含解析_第4页
福建省云霄立人学校2021-2022学年高三第二次调研数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,其中a,b是实数,则( )A1B2CD2集合的真子集的个数是( )ABCD3“是函数在区间内单调递增”的( )

2、A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件4当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是( )ABCD5已知平面向量,满足,且,则( )A3BCD56已知复数满足(是虚数单位),则=()ABCD7已知正项等比数列中,存在两项,使得,则的最小值是( )ABCD8某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A互联网行业从业人员中90后占一半以上B互联

3、网行业中从事技术岗位的人数超过总人数的C互联网行业中从事运营岗位的人数90后比80前多D互联网行业中从事技术岗位的人数90后比80后多9已知复数z(1+2i)(1+ai)(aR),若zR,则实数a( )ABC2D210若复数满足,则( )ABCD11已知等比数列的前项和为,且满足,则的值是( )ABCD12如图所示的程序框图输出的是126,则应为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设变量,满足约束条件,则目标函数的最小值为_14将函数的图象向左平移个单位长度,得到一个偶函数图象,则_15正方形的边长为2,圆内切于正方形,为圆的一条动直径,点为正方形边界上任一点,则

4、的取值范围是_.16已知函数,则函数的极大值为 _三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望18(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教

5、师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.19(12分)已知椭圆:(),四点,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左右顶点分别为.是椭圆上异于的动点,求的正切的最大值.20(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.21(12分)交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其中有40名男性驾驶员,其中平均车速超过的有30

6、人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.(1)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;平均车速超过的人数平均车速不超过的人数合计男性驾驶员女性驾驶员合计(2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,求的分布列和数学期望.参考公式:其中临界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82822(10分) “绿水青山就是金山银山”,为推广生态环境保护意识,高二一班

7、组织了环境保护兴趣小组,分为两组,讨论学习甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为 “选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.2C

8、【解析】根据含有个元素的集合,有个子集,有个真子集,计算可得;【详解】解:集合含有个元素,则集合的真子集有(个),故选:C【点睛】考查列举法的定义,集合元素的概念,以及真子集的概念,对于含有个元素的集合,有个子集,有个真子集,属于基础题3C【解析】,令解得当,的图像如下图当,的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.4A【解析】根据循环结构的运行,直至不满足条件退出循环体,求出的范围,利用几何概型概率公式,即可求出结论.【详解】程序框图共运行3次,输出的的范围是,所以输出的不小于103的概率为.故选:A.【点睛】本题考查循环结构输出结果、

9、几何概型的概率,模拟程序运行是解题的关键,属于基础题.5B【解析】先求出,再利用求出,再求.【详解】解:由,所以,故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.6A【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】解:由,得,故选【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题7C【解析】由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.【详解】,或(舍).,.当,时;当,时;当,时,所以最小值为.故选:C.【点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题.8D【解析】根据两个图

10、形的数据进行观察比较,即可判断各选项的真假【详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多故选:D.【点睛】本题主要考查了命题的真假判定

11、,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.9D【解析】化简z(1+2i)(1+ai)=,再根据zR求解.【详解】因为z(1+2i)(1+ai)=,又因为zR,所以,解得a-2.故选:D【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.10C【解析】化简得到,再计算复数模得到答案.【详解】,故,故,.故选:.【点睛】本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.11C【解析】利用先求出,然后计算出结果.【详解】根据题意,当时,,故当时,,数列是等比数列,则,故,解得,故选.【点睛】本题主要考查了等比数列前

12、项和的表达形式,只要求出数列中的项即可得到结果,较为基础.12B【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件S=2+22+21=121,故中应填n1故选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解

13、流程图的含义而导致错误二、填空题:本题共4小题,每小题5分,共20分。13-8【解析】通过约束条件,画出可行域,将问题转化为直线在轴截距最大的问题,通过图像解决.【详解】由题意可得可行域如下图所示:令,则即为在轴截距的最大值由图可知:当过时,在轴截距最大本题正确结果:【点睛】本题考查线性规划中的型最值的求解问题,关键在于将所求最值转化为在轴截距的问题.14【解析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称 即: 本题正确结果:【点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的

14、对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.15【解析】根据向量关系表示,只需求出的取值范围即可得解.【详解】由题可得:,故答案为:【点睛】此题考查求平面向量数量积的取值范围,涉及基本运算,关键在于恰当地对向量进行转换,便于计算解题.16【解析】对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.【详解】,故解得, ,令,解得函数在单调递增,在单调递减,故的极大值为故答案为:.【点睛】本题考查函数极值的求解,难点是要通过赋值,求出未知量.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)当或时,有3个坑要补播种的概率最大,最大概率为; (2)见解

15、析.【解析】(1)将有3个坑需要补种表示成n的函数,考查函数随n的变化情况,即可得到n为何值时有3个坑要补播种的概率最大(2)n1时,X的所有可能的取值为0,1,2,3,1分别计算出每个变量对应的概率,列出分布列,求期望即可【详解】(1)对一个坑而言,要补播种的概率,有3个坑要补播种的概率为.欲使最大,只需,解得,因为,所以当时,;当时,;所以当或时,有3个坑要补播种的概率最大,最大概率为.(2)由已知,的可能取值为0,1,2,3,1.,所以的分布列为01231的数学期望.【点睛】本题考查了古典概型的概率求法,离散型随机变量的概率分布,二项分布,主要考查简单的计算,属于中档题18(1)28种;

16、(2)分布见解析,.【解析】(1)分这名女教师分别来自党员学习组与非党员学习组,可得恰好有一名女教师的选派方法数;(2)X的可能取值为,再求出X的每个取值的概率,可得X的概率分布和数学期望.【详解】解:(1)选出的4名选手中恰好有一名女生的选派方法数为种.(2)X的可能取值为0,1,2,3. ,.故X的概率分布为:X0123P所以.【点睛】本题主要考查组合数与组合公式及离散型随机变量的期望和方差,相对不难,注意运算的准确性.19(1);(2)【解析】(1)分析可得必在椭圆上,不在椭圆上,代入即得解;(2)设直线PA,PB的倾斜角分别为,斜率为,可得.则,利用均值不等式,即得解.【详解】(1)因

17、为关于轴对称,所以必在椭圆上,不在椭圆上,即.(2)设椭圆上的点(),设直线PA,PB的倾斜角分别为,斜率为又.,(不妨设).故 当且仅当,即时等号成立【点睛】本题考查了直线和椭圆综合,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.20(1);(2).【解析】(1)对范围分类整理得:,分类解不等式即可(2)利用已知转化为“当时,”恒成立,利用绝对值不等式的性质可得:,问题得解【详解】当时,当时,由得,解得;当时,无解;当时,由得,解得,所以的解集为(2)的解集包含等价于在上恒成立,当时,等价于恒成立,而,故满足条件的的取值范围是【点睛】本题主要考查了含绝对值不等式的解法,还考查了转化能力及绝对值不等式的性质,考查计算能力,属于中档题21(1)填表见解析;有的把握认为,平均车速超过与性别有关(2)详见解析【解析】(1)根据题目所给数据填写列联表,计算出的值,由此判断出有的把握认为,平均车速超过与性别有关.(2)利用二项分布的知识计算出分布列和数学期望.【详解】(1)平均车速超过的人数平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论