2.1.2 由曲线求它的方程、…1_第1页
2.1.2 由曲线求它的方程、…1_第2页
2.1.2 由曲线求它的方程、…1_第3页
2.1.2 由曲线求它的方程、…1_第4页
2.1.2 由曲线求它的方程、…1_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、求轨迹方程教学设计基本知识概要:一、求轨迹的一般方法:1直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法。用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。2定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。3.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x,y)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x,y

2、表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。4.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。5.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。6.几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。7.待定系数法:求圆、椭圆、双曲线以及抛物线的方程常用待定

3、系数法求。8.点差法:求圆锥曲线中点弦轨迹问题时,常把两个端点设为并代入圆锥曲线方程,然而作差求出曲线的轨迹方程。二、注意事项:1直接法是基本方法;定义法要充分联想定义、灵活动用定义;代入法要设法找到关系式x=f(x,y), y=g(x,y);参数法要合理选取点参、角参、斜率参等参数并学会消参;交轨法要选择参数建立两曲线方程再直接消参;几何法要挖掘几何属性、找到等量关系。2要注意求得轨迹方程的完备性和纯粹性。在最后的结果出来后,要注意挖去或补上一些点等。【典型例题选讲】一、直接法题型:例1 已知直角坐标系中,点Q(2,0),圆C的方程为,动点M到圆C的切线长与的比等于常数,求动点M的轨迹。解:

4、设MN切圆C于N,则。设,则 化简得当时,方程为,表示一条直线。当时,方程化为表示一个圆。说明:求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。练习:(待定系数法题型)在中,且的面积为1,建立适当的坐标系,求以M,N为焦点,且过点P的椭圆方程。解答过程参考教材P129页例1。二、定义法题型:例2 如图,某建筑工地要挖一个横截面为半圆的柱形土坑,挖出的土只能沿AP、BP运到P处,其中AP=100m,BP=150m,APB=600,问怎能样运才能最省工?解:半圆上的点可分为三类:一是沿AP到P较近,二是沿BP到P较近,三是沿AP或BP一样近。其中第三类的点位于前两类的分

5、界线上,设M为分界线上的任一点,则有,即,故M在以A,B为焦点的双曲线的右支上。建立如图直角坐标系,得边界的方程为,故运土时为了省工,在双曲线弧左侧的土沿AP运到P处,右侧的土沿BP运到P处,在曲线上面的土两边都可运。说明:利用双曲线的定义可直接写出双曲线方程。练习: 已知圆O的方程为 x2+y2=100,点A的坐标为(-6,0),M为圆O上任一点,AM的垂直平分线交OM于点P,求点P的方程。解:由中垂线知,故,即P点的轨迹为以A、O为焦点的椭圆,中心为(-3,0),故P点的方程为三、代入法题型:例3 如图,从双曲线x2-y2=1上一点Q引直线x+y=2的垂线,垂足为N。求线段QN的中点P的轨

6、迹方程。解:设动点P的坐标为(x,y),点Q的坐标为(x1,y1)则N( 2x-x1,2y-y1)代入x+y=2,得2x-x1+2y-y1=2 又PQ垂直于直线x+y=2,故,即x-y+y1-x1=0 由解方程组得, 代入双曲线方程即可得P点的轨迹方程是2x2-2y2-2x+2y-1=0练习:已知曲线方程f(x,y)=0.分别求此曲线关于原点,关于x轴,关于y轴,关于直线y=x,关于直线y=-x,关于直线y=3对称的曲线方程。(f(-x,-y)=0,f(x,-y)=0,f(-x,y)=0,f(y,x)=0,f(-x,-y)=0,f(x,6-y)=0)四、参数法与点差法题型:例4 经过抛物线y2

7、=2p(x+2p)(p0)的顶点A作互相垂直的两直线分别交抛物线于B、C两点,求线段BC的中点M轨迹方程。解:A(-2p,0),设直线AB的方程为y=k(x+2p)(k0).与抛物线方程联立方程组可解得B点的坐标为,由于AC与AB垂直,则AC的方程为,与抛物线方程联立方程组可解得C点的坐标为,又M为BC中点,设M(x,y),则,消去k得y2=px,即点M的轨迹是抛物线。五、交轨法与几何法题型例5 抛物线的顶点作互相垂直的两弦OA、OB,求抛物线的顶点O在直线AB上的射影M的轨迹。(考例5)解1(交轨法):点A、B在抛物线上,设A(,B(所以kOA= kOB=,由OA垂直OB得kOA kOB =

8、 -1,得yAyB= -16p2 ,又AB方程可求得,即(yA+yB)y-4px-yAyB=0,把 yAyB= -16p2代入得AB方程(yA+yB)y-4px+16p2 =0 又OM的方程为 由消去得yA+yB即得, 即得。所以点M的轨迹方程为,其轨迹是以为圆心,半径为的圆,除去点(0,0)。说明:用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。解2(几何法):由解1中AB方程(yA+yB)y-4px+16p2 =0 可得AB过定点(4p,0)而OM垂直AB,所以由圆的几法性质可知:M点的轨迹是以为圆心

9、,半径为的圆。所以方程为,除去点(0,0)。六、点差法:例6(2004年福建,22)如图,P是抛物线C:上一点,直线过点P且与抛物线C交于另一点Q。若直线与过点P的切线垂直,求线段PQ中点M的轨迹方程。(图见教材P129页例2)。解:设由(1)得,过点P的切线的斜率,直线的斜率,直线的方程为(2)方法一、(利用韦达定理、中点坐标公式)联立(1)(2)消去得,M为PQ的中点,消去PQ中点为M的轨迹方程为方法二(点差法)由得则。将上式代入(2)并整理,得PQ中点为M的轨迹方程为说明:本题主要考查了直线、抛物线的基础知识,以及求轨迹方程的常用方法,本题的关键是利用导数求切线的斜率以及灵活运用数学知识分析问题、解决问题。【小结】一、求轨迹的一般方法:1直接法,2定义法,3代入法,4参数法,5交轨法,6几何法,7.待定系数法,8.点差法。二、注意事项:1直接法是基本方法;定义法要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论