版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的
2、和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( )ABCD2已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( )ABCD3设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )ABCD14若的二项展开式中的系数是40,则正整数的值为( )A4B5C6D75已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )ABCD6网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为( )A1BC3D47已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )ABCD8双
3、曲线的渐近线方程为( )ABCD9等比数列中,则与的等比中项是( )A4B4CD10函数的图象可能为( )ABCD11已知正方体的棱长为2,点为棱的中点,则平面截该正方体的内切球所得截面面积为( )ABCD12已知数列an满足:an=2,n5a1a2an-1-1,n6nN*.若正整数k(k5)使得a12+a22+ak2=a1a2ak成立,则k=( )A16B17C18D19二、填空题:本题共4小题,每小题5分,共20分。13 “北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点远地点离地面的距离大约分别是,则“北斗三号”卫星运行轨道的离心率为_.14如图所示,在边长为
4、4的正方形纸片中,与相交于.剪去,将剩余部分沿,折叠,使、重合,则以、为顶点的四面体的外接球的体积为_.15若随机变量的分布列如表所示,则_,_-10116的展开式中,x5的系数是_(用数字填写答案)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)数列满足,其前n项和为,数列的前n项积为.(1)求和数列的通项公式;(2)设,求的前n项和,并证明:对任意的正整数m、k,均有.18(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)求曲线上
5、的点到直线距离的最小值和最大值.19(12分)已知抛物线的焦点为,点在抛物线上,直线过点,且与抛物线交于,两点(1)求抛物线的方程及点的坐标;(2)求的最大值20(12分)等差数列中,分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的组合,并求数列的通项公式;(2)记(1)中您选择的的前项和为,判断是否存在正整数,使得,成等比数列,若有,请求出的值;若没有,请说明理由.21(12分)选修4-2:矩阵与变换(本小题满分10分)已知矩阵A (k0)的一个特征向量为,A的逆矩阵A1对应的变换将点(
6、3,1)变为点(1,1)求实数a,k的值22(10分)已知双曲线及直线.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A,B两点,O是原点,且,求实数k的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果【详解】从6个球中摸出2个,共有种结果,两个球的号码之和是3的倍数,共有摸一次中奖的概率是,5个人摸奖,相当于发生5次试验,且每一次发生的概率是,有5人参与摸奖,恰好有2人获奖的概率是,故
7、选:【点睛】本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题2B【解析】由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.3C【解析】试题分析:设,由题意,显然时不符合题意,故,则,可得:,当且仅当时取等号,故选C考点:1抛物线的简单几何性质;2均值不等式【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题解题时一定要注意分析条件,根据条件,利用向量的运算可知,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易
8、出问题4B【解析】先化简的二项展开式中第项,然后直接求解即可【详解】的二项展开式中第项.令,则,(舍)或.【点睛】本题考查二项展开式问题,属于基础题5D【解析】设,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;【详解】解:设,由,得,解得或,.又由,得,或,又,代入解得.故选:D【点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.6A【解析】采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A【
9、点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.7A【解析】根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,即:,所以双曲线的渐近线方程为:.故选:A.【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.8A【解析】将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了
10、双曲线的标准方程,双曲线的简单性质的应用.9A【解析】利用等比数列的性质可得 ,即可得出【详解】设与的等比中项是由等比数列的性质可得, 与的等比中项 故选A【点睛】本题考查了等比中项的求法,属于基础题10C【解析】先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.11A【解析】根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面的距离,由此求解出截面圆的半径,从而截面面积可求.【详解】如图所示:设内切球球心为,到平面的距离为,截面圆的半径为,因为内切球的半径等于正方体棱
11、长的一半,所以球的半径为,又因为,所以,又因为,所以,所以,所以截面圆的半径,所以截面圆的面积为.故选:A.【点睛】本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算.12B【解析】由题意可得a1=a2=a3=a4=a5=2,a6=a1a2a3a5-1=25-1=31,n6时,a1a2an-1=1+an,将n换为n+1,两式相除,an2=an+1-an+1,n6,累加法求得a62+a72+ak2=ak+1-a6+k-5即有a12+a22+ak2=20+ak+1-a6+k-5=ak+1+k-
12、16,结合条件,即可得到所求值【详解】解:an=2,n5a1a2an-1-1,n6(nN*),即a1=a2=a3=a4=a5=2,a6=a1a2a3a5-1=25-1=31,n6时,a1a2an-1=1+an,a1a2an=1+an+1,两式相除可得1+an+11+an=an,则an2=an+1-an+1,n6,由a62=a7-a6+1,a72=a8-a7+1,ak2=ak+1-ak+1,k5,可得a62+a72+ak2=ak+1-a6+k-5a12+a22+ak2=20+ak+1-a6+k-5=ak+1+k-16,且a1a2ak=1+ak+1,正整数k(k5)时,要使得a12+a22+ak2
13、=a1a2ak成立,则ak+1+k-16=ak+1+1,则k=17,故选:B【点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点远地点离地面的距离大约分别是,可得,解得,所以椭圆的离心率为.故答案为:.【点睛】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列出方程组,求得的值是解答的
14、关键,着重考查了推理与计算能力,属于基础题.14【解析】将三棱锥置入正方体中,利用正方体体对角线为三棱锥外接球的直径即可得到答案.【详解】由已知,将三棱锥置入正方体中,如图所示,故正方体体对角线长为,所以外接球半径为,其体积为.故答案为:.【点睛】本题考查三棱锥外接球的体积问题,一般在处理特殊几何体的外接球问题时,要考虑是否能将其置入正(长)方体中,是一道中档题.15 【解析】首先求得a的值,然后利用均值的性质计算均值,最后求得的值,由方差的性质计算的值即可.【详解】由题意可知,解得(舍去)或.则,则,由方差的计算性质得.【点睛】本题主要考查分布列的性质,均值的计算公式,方差的计算公式,方差的
15、性质等知识,意在考查学生的转化能力和计算求解能力.16-189【解析】由二项式定理得,令r = 5得x5的系数是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),;(2),证明见解析【解析】(1)利用已知条件建立等量关系求出数列的通项公式(2)利用裂项相消法求出数列的和,进一步利用放缩法求出结论【详解】(1),得是公比为的等比数列,当时,数列的前项积为,则,两式相除得,得,又得,;(2),故.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,数列的前项和的应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力,属于中档题18(1)(2)最大值;最小值
16、.【解析】(1)结合极坐标和直角坐标的互化公式可得;(2)利用参数方程,求解点到直线的距离公式,结合三角函数知识求解最值.【详解】解:(1)因为,代入,可得直线的直角坐标方程为.(2)曲线上的点到直线的距离,其中,.故曲线上的点到直线距离的最大值,曲线上的点到直线的距离的最小值.【点睛】本题主要考查极坐标和直角坐标的转化及最值问题,椭圆上的点到直线的距离的最值求解优先考虑参数方法,侧重考查数学运算的核心素养.19(1),;(2)1【解析】(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;(2)设直线l的方程为:x+my10,代入y24x,得,y2+4my4
17、0,设A(x1,y1),B(x2,y2),则y1+y24m,y1y24,x1+x22+4m2,x1x21,(),(x22,),由此能求出的最大值【详解】(1)点F是抛物线y22px(p0)的焦点,P(2,y0)是抛物线上一点,|PF|3,23,解得:p2,抛物线C的方程为y24x,点P(2,n)(n0)在抛物线C上,n2428,由n0,得n2,P(2,2)(2)F(1,0),设直线l的方程为:x+my10,代入y24x,整理得,y2+4my40设A(x1,y1),B(x2,y2),则y1,y2是y2+4my40的两个不同实根,y1+y24m,y1y24,x1+x2(1my1)+(1my2)2m
18、(y1+y2)2+4m2,x1x2(1my1)(1my2)1m(y1+y2)+m2y1y21+4m24m21,(),(x22,),(x12)(x22)+()()x1x22(x1+x2)+4148m2+44+8m+88m2+8m+58(m)2+1当m时,取最大值1【点睛】本题考查抛物线方程的求法,考查向量的数量积的最大值的求法,考查抛物线、直线方程、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题20(1)见解析,或;(2)存在,.【解析】(1)满足题意有两种组合:,分别计算即可;(2)由(1)分别讨论两种情况,假设存在正整数,使得,成等比数列,即,解方程是否存在正整数解即可.【详解】(1)由题意可知:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高校与企业合作协议教授聘请合同范本3篇
- 2025版木门企业安全生产责任书合同范本2篇
- 2025年分期付款运动服装合同
- 2025年分期室内设计服务合同
- 跨国集团2025年度全球营销战略合同2篇
- 2025年版个人汽车买卖合同示范文本3篇
- 2025年汽车配件赠与协议
- 二零二五年敬老院养老用品销售与售后服务合同规范3篇
- 2025版教育培训机构合作协议样本3篇
- 2025版学生实训基地实习就业保障服务合同3篇
- 《社会工作实务》全册配套完整课件3
- 单位违反会风会书检讨书
- 2024年4月自考00832英语词汇学试题
- 《电力用直流电源系统蓄电池组远程充放电技术规范》
- 《哪吒之魔童降世》中的哪吒形象分析
- 信息化运维服务信息化运维方案
- 汽车修理厂员工守则
- 公安交通管理行政处罚决定书式样
- 10.《运动技能学习与控制》李强
- 冀教版数学七年级下册综合训练100题含答案
- 1神经外科分级护理制度
评论
0/150
提交评论