北京东城55中2022年高考仿真卷数学试题含解析_第1页
北京东城55中2022年高考仿真卷数学试题含解析_第2页
北京东城55中2022年高考仿真卷数学试题含解析_第3页
北京东城55中2022年高考仿真卷数学试题含解析_第4页
北京东城55中2022年高考仿真卷数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,分别是中,所对边的边长,则直线与的位置关系是( )A平行B重合C垂直D相交但不垂直2已知向量,且与的夹角为,则

2、( )AB1C或1D或93已知函数的定义域为,则函数的定义域为( )ABCD4已知集合Ay|y,Bx|ylg(x2x2),则R(AB)( )A0,)B(,0),+)C(0,)D(,0,+)5复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于( )ABCD6若(),则( )A0或2B0C1或2D17已知向量,则是的( )A充分不必要条件B必要不充分条件C既不充分也不必要条件D充要条件8设集合,则( )ABCD9已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为( )ABC0D10命题:的否定为ABCD11甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字

3、的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到.已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( )A甲B乙C丙D丁12已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是( )AB4C2D二、填空题:本题共4小题,每小题5分,共20分。13已知全集,则_.14若函数,则_;_.15已知为正实数,且,则的最小值为_.16已知,(,),则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)当时,讨论函数的零点个数;(2)若在上单调递增,且求c的最大值.18(12分)如

4、图,在四棱柱中,平面,底面ABCD满足BC,且()求证:平面;()求直线与平面所成角的正弦值.19(12分)已知函数(1)若,试讨论的单调性;(2)若,实数为方程的两不等实根,求证:.20(12分)已知抛物线的焦点为,点,点为抛物线上的动点 (1)若的最小值为,求实数的值; (2)设线段的中点为,其中为坐标原点,若,求的面积21(12分)已知函数.(1)若,且,求证:;(2)若时,恒有,求的最大值.22(10分)已知圆O经过椭圆C:的两个焦点以及两个顶点,且点在椭圆C上求椭圆C的方程;若直线l与圆O相切,与椭圆C交于M、N两点,且,求直线l的倾斜角参考答案一、选择题:本题共12小题,每小题5分

5、,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系2C【解析】由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.【点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题3A【解析】试题分析:由题意,得,解得,故选A考点:函数的定义域4D【解析】求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合Ay|yy|y00,+);Bx|ylg(x2x2)x|x2x20 x|0 x(0,),AB(0,),R

6、(AB)(,0,+).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.5A【解析】根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,则,因此,.故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.6A【解析】利用复数的模的运算列方程,解方程求得的值.【详解】由于(),所以,解得或.故选:A【点睛】本小题主要考查复数模的运算,属于基础题.7A【解析】向量,则,即,或者-1,判断出即可【详解】解:向量,则,即,或者-1,所

7、以是或者的充分不必要条件,故选:A【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.8D【解析】利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.9C【解析】先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,则在上单调递减,在上单调递增,

8、所以,即,所以(当时等号成立).故选:C【点睛】此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.10C【解析】命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C11A【解析】可采用假设法进行讨论推理,即可得到结论.【详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的,丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的;假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以断定值班人是甲.故选:A.【点睛】本题主要考查了合情推理

9、及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.12B【解析】设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,当且仅当三点共线时,取“”号,的最小值为.故选:B.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】利用集合的补集运算即可求解.【详解】由全集,所以.故答案为:【点睛】本题考查了集合的补集运算,需理解补集的概念,属于基础题.140

10、 1 【解析】根据分段函数解析式,代入即可求解.【详解】函数,所以,.故答案为:0;1.【点睛】本题考查了分段函数求值的简单应用,属于基础题.15【解析】,所以有,再利用基本不等式求最值即可.【详解】由已知,所以,当且仅当,即时,等号成立.故答案为:【点睛】本题考查利用基本不等式求和的最小值问题,采用的是“1”的替换,也可以消元等,是一道中档题.16【解析】先利用倍角公式及差角公式把已知条件化简可得,平方可得.【详解】,则,平方可得故答案为:.【点睛】本题主要考查三角恒等变换,倍角公式的合理选择是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步

11、骤。17(1)见解析(2)2【解析】(1)将代入可得,令,则,设,则转化问题为与的交点问题,利用导函数判断的图象,即可求解;(2)由题可得在上恒成立,设,利用导函数可得,则,即,再设,利用导函数求得的最小值,则,进而求解.【详解】(1)当时,定义域为,由可得,令,则,由,得;由,得,所以在上单调递增,在上单调递减,则的最大值为,且当时,;当时,由此作出函数的大致图象,如图所示.由图可知,当时,直线和函数的图象有两个交点,即函数有两个零点;当或,即或时,直线和函数的图象有一个交点,即函数有一个零点;当即时,直线与函数的象没有交点,即函数无零点.(2)因为在上单调递增,即在上恒成立,设,则,若,则

12、,则在上单调递减,显然,在上不恒成立;若,则,在上单调递减,当时,故,单调递减,不符合题意;若,当时,单调递减,当时,单调递增,所以,由,得,设,则,当时,单调递减;当时,单调递增,所以,所以,又,所以,即c的最大值为2.【点睛】本题考查利用导函数研究函数的零点问题,考查利用导函数求最值,考查运算能力与分类讨论思想.18 () 证明见解析;()【解析】()证明,根据得到,得到证明.() 如图所示,分别以为轴建立空间直角坐标系,平面的法向量,计算向量夹角得到答案.【详解】() 平面,平面,故.,故,故.,故平面.()如图所示:分别以为轴建立空间直角坐标系,则,.设平面的法向量,则,即,取得到,设

13、直线与平面所成角为故.【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.19(1)答案不唯一,具体见解析(2)证明见解析【解析】(1)根据题意得,分与讨论即可得到函数的单调性;(2)根据题意构造函数,得,参变分离得,分析不等式,即转化为,设,再构造函数,利用导数得单调性,进而得证.【详解】(1)依题意,当时,当时,恒成立,此时在定义域上单调递增;当时,若,;若,;故此时的单调递增区间为,单调递减区间为.(2)方法1:由得令,则,依题意有,即,要证,只需证(不妨设),即证,令,设,则,在单调递减,即,从而有.方法2:由得令,则,当时,时,故在上单调递增,在上单调递减,不

14、妨设,则,要证,只需证,易知,故只需证,即证令,(),则=,(也可代入后再求导)在上单调递减,故对于时,总有.由此得【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.20(1)的值为或.(2)【解析】(1)分类讨论,当时,线段与抛物线没有公共点,设点在抛物线准线上的射影为,当三点共线时,能取得最小值,利用抛物线的焦半径公式即可求解;当时,线段与抛物线有公共点,利用两点间的距离公式即可求解. (2)由题意可得轴且设,则,代入抛物线方程求出,再利用三角形的面积公式即可求解.【详解】由题,若线段与抛物线没有公共点,即时,设点在抛物线准线上的射影为,则三点共

15、线时,的最小值为,此时若线段与抛物线有公共点,即时,则三点共线时,的最小值为:,此时综上,实数的值为或.因为,所以轴且设,则,代入抛物线的方程解得于是,所以【点睛】本题考查了抛物线的焦半径公式、直线与抛物线的位置关系中的面积问题,属于中档题.21(1)见解析;(2).【解析】(1)利用导数分析函数的单调性,并设,则,将不等式等价转化为证明,构造函数,利用导数分析函数在区间上的单调性,通过推导出来证得结论;(2)构造函数,对实数分、,利用导数分析函数的单调性,求出函数的最小值,再通过构造新函数,利用导数求出函数的最大值,可得出的最大值.【详解】(1),所以,函数单调递增,所以,当时,此时,函数单

16、调递减;当时,此时,函数单调递增.要证,即证.不妨设,则,下证,即证,构造函数,所以,函数在区间上单调递增,即,即,且函数在区间上单调递增,所以,即,故结论成立;(2)由恒成立,得恒成立,令,则.当时,对任意的,函数在上单调递增,当时,不符合题意;当时,;当时,令,得,此时,函数单调递增;令,得,此时,函数单调递减.令,设,则.当时,此时函数单调递增;当时,此时函数单调递减.所以,函数在处取得最大值,即.因此,的最大值为.【点睛】本题考查利用导数证明不等式,同时也考查了利用导数求代数式的最值,构造新函数是解答的关键,考查推理能力,属于难题.22(1);(2)或【解析】(1)先由题意得出 ,可得出与的等量关系,然后将点的坐标代入椭圆的方程,可求出与的值,从而得出椭圆的方程;(2)对直线的斜率是否存在进行分类讨论,当直线的斜率不存在时,可求出,然后进行检验;当直线的斜率存在时,可设直线的方程为,设点,先由直线与圆相切得出与之间的关系,再将直线的方程与椭圆的方程联立,由韦达定理,利用弦长公式并结合条件得出的值,从而求出直线的倾斜角.【详解】(1)由题可知圆只能经过椭圆的上下顶点,所以椭圆焦距等于短轴长,可得,又点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论