版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,则边上的高为( )AB2CD2已知Sn为等比数列an的前n项和,a516,a3a432,则S8( )A21B
2、24C85D853已知等边ABC内接于圆:x2+ y2=1,且P是圆上一点,则的最大值是( )AB1CD24若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( )A85B84C57D565陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )ABCD6我国古代典籍周易用“卦”描述万物的变化每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“ ”如图就是一重卦在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是( )ABCD7设,满足约束条件,则的最大值是( )ABCD8在复平面内,复数z=
3、i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是( )ABCD9复数的共轭复数为( )ABCD10若x(0,1),alnx,b,celnx,则a,b,c的大小关系为()AbcaBcbaCabcDbac11已知椭圆:的左、右焦点分别为,过的直线与轴交于点,线段与交于点.若,则的方程为( )ABCD12已知双曲线(,)的左、右焦点分别为,以(为坐标原点)为直径的圆交双曲线于两点,若直线与圆相切,则该双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设,满足约束条件,若的最大值是10,则_.14在中,角,的对边分别为,若,且,则面积的最大值为_.1
4、5已知数列为等比数列,则_.16如图梯形为直角梯形,图中阴影部分为曲线与直线围成的平面图形,向直角梯形内投入一质点,质点落入阴影部分的概率是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,已知点,曲线:(为参数)以原点为极点,轴正半轴建立极坐标系,直线的极坐标方程为.()判断点与直线的位置关系并说明理由;()设直线与曲线的两个交点分别为,求的值.18(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.19(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率
5、都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.20(12分)如图,在中,点在线段上.(1)若,求的长;(2)若,求的面积.21(12分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均体育锻炼时间在的学生评价为“锻炼达标”(1)请根据上述表格中的统计数据填写下面列联表:并通过计算判断,是否能在犯错误的概率不超过的前提下认为“锻炼达标”与性别有关?(2)在“锻炼达
6、标”的学生中,按男女用分层抽样方法抽出人,进行体育锻炼体会交流(i)求这人中,男生、女生各有多少人?(ii)从参加体会交流的人中,随机选出人发言,记这人中女生的人数为,求的分布列和数学期望参考公式:,其中临界值表:0.100.050.0250.01002.7063.8415.0246.63522(10分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】结
7、合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.2D【解析】由等比数列的性质求得a1q416,a12q532,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n项和公式解答即可.【详解】设等比数列an的公比为q,a516,a3a432,a1q416,a12q532,q2,则,则,故选:D.【点睛】本题主要考查等比数列的前n项和,根据等比数列建立
8、条件关系求出公比是解决本题的关键,属于基础题.3D【解析】如图所示建立直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.4A【解析】先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.5C【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【详解】由题意可知几何体的直观图如图:上部是底面
9、半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【点睛】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.6C【解析】利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.【详解】设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.故选:C【点睛】本题主要考查了对立事件概率和为1的方法求解事件概率的方法.
10、属于基础题.7D【解析】作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值【详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.8A【解析】由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:复数z=i(i为虚数单位)在复平面中对应点Z(0,1),(0,1),将绕原点O逆时针旋转得到,设(a,b),则,即,又,解得:,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基
11、础题.9D【解析】直接相乘,得,由共轭复数的性质即可得结果【详解】其共轭复数为.故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.10A【解析】利用指数函数、对数函数的单调性直接求解【详解】x(0,1),alnx0,b()lnx()01,0celnxe01,a,b,c的大小关系为bca故选:A【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题11D【解析】由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.12D【解析】连接
12、,可得,在中,由余弦定理得,结合双曲线的定义,即得解.【详解】连接,则,所以,在中,故在中,由余弦定理可得. 根据双曲线的定义,得,所以双曲线的离心率故选:D【点睛】本题考查了双曲线的性质及双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】画出不等式组表示的平面区域,数形结合即可容易求得结果.【详解】画出不等式组表示的平面区域如下所示:目标函数可转化为与直线平行,数形结合可知当且仅当目标函数过点,取得最大值,故可得,解得.故答案为:.【点睛】本题考查由目标函数的最值求参数值,属基础题.14【解析】利用正弦定理将
13、角化边得到,再由余弦定理得到,根据同角三角函数的基本关系表示出,最后利用面积公式得到,由基本不等式求出的取值范围,即可得到面积的最值;【详解】解:在中,.,即,当且仅当时等号成立,面积的最大值为.故答案为:【点睛】本题考查正弦定理、余弦定理解三角形,三角形面积公式的应用,以及基本不等式的应用,属于中档题.1581【解析】设数列的公比为,利用等比数列通项公式求出,代入等比数列通项公式即可求解.【详解】设数列的公比为,由题意知, 因为,由等比数列通项公式可得,解得,由等比数列通项公式可得,.故答案为:【点睛】本题考查等比数列通项公式;考查运算求解能力;属于基础题.16【解析】联立直线与抛物线方程求
14、出交点坐标,再利用定积分求出阴影部分的面积,利用梯形的面积公式求出,最后根据几何概型的概率公式计算可得;【详解】解:联立解得或,即,故答案为:【点睛】本题考查几何概型的概率公式的应用以及利用微积分基本定理求曲边形的面积,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()点在直线上;见解析()【解析】()直线:,即,所以直线的直角坐标方程为,因为,所以点在直线上;()根据直线的参数方程中参数的几何意义可得.【详解】()直线:,即,所以直线的直角坐标方程为,因为,所以点在直线上;()直线的参数方程为(为参数),曲线的普通方程为,将直线的参数方程代入曲线的普通方程得,
15、设两根为,所以,故与异号,所以,所以.【点睛】本题考查在极坐标参数方程中方程互化,还考查了直线的参数方程中参数的几何意义,属于中档题.18(1);(2).【解析】(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【详解】解:(1)当时,则当时,由得,解得;当时,恒成立;当时,由得,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,当时,式等号成立,即.又因为,当时,式等号成立,即.所以,即即的取值范围为:.【点睛】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在
16、性问题求参变数的范围问题;能力:分析问题和解决问题的能力以及运算求解能力;中档题.19(1)(2)见解析,【解析】(1)根据题意设出事件,列出概率,运用公式求解;(2)由题得,X的所有可能取值为,根据(1)和变量对应的事件,可得变量对应的概率,即可得分布列和期望值.【详解】(1)记2家小店分别为A,B,A店有i人休假记为事件(,1,2),B店有i人,休假记为事件(,1,2),发生调剂现象的概率为P.则,.所以.答:发生调剂现象的概率为.(2)依题意,X的所有可能取值为0,1,2.则,.所以X的分布表为:X012P所以.【点睛】本题是一道考查概率和期望的常考题型.20(1)(2)【解析】(1)先
17、根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积【详解】(1)由,得,所以.由正弦定理得,即,得.(2)由正弦定理,在中,在中,又,由得,由余弦定理得,即,解得,所以的面积.【点睛】本题主要考查正余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于基础题21(1)能;(2)(i)男生有人,女生有人;(ii),分布列见解析【解析】(1)根据所给数据可完成列联表由总人数及女生人数得男生人数,由表格得达标人数,从而得男生中达标人数,这样不达标人数随之而得,然后计算可得结论;(2)由达标人数中男女生人数比为可得抽取的人数,总共选2人,女生有4人,的可能值为0,1,2,分别计算概率得分布列,再由期望公式可计算出期望【详解】(1)列出列联表,所以在犯错误的概率不超过的前提下能判断“课外体育达标”与性别有关(2)(i)在“锻炼达标”的学生中,男女生人数比为,用分层抽样方法抽出人,男生有人,女生有人(ii)从参加体会交流的人中,随机选出人发言,人中女生的人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简短的伤感心情语录34条
- 《吊装作业设计指南》课件
- 《物流中心规划方案》课件
- 《润乾报表部署培训》课件
- 2022年北京市公务员录用考试《行测》真题及答案解析
- 创意画 知识课件
- 新大楼智能化系统弱电工程全面方案
- 《江苏移动产品推介》课件
- 【语文课件】寡人之于国也课件
- 2024年新高一数学初升高衔接《正弦函数、余弦函数的图像》含答案解析
- 部编版一年级上册道德与法治《吃饭有讲究》电子课件
- 2024年员工考勤表(通用版)
- 小学一年级上学期思维训练数学试题(答案)
- 项目式学习课程设计-第1篇
- 华为ipd流程管理
- 2023年广西水利电力职业技术学院教师招聘考试笔试题库及答案
- GB/T 29711-2023焊缝无损检测超声检测焊缝内部不连续的特征
- 世界各国国家代号、区号、时差
- JGT388-2012 风机过滤器机组
- 花木兰短剧剧本英文版
- 班主任技能大赛一等奖治班策略
评论
0/150
提交评论