开关磁阻电机课件(ppt)_第1页
开关磁阻电机课件(ppt)_第2页
开关磁阻电机课件(ppt)_第3页
开关磁阻电机课件(ppt)_第4页
开关磁阻电机课件(ppt)_第5页
已阅读5页,还剩74页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、开关磁阻电机课件(ppt)课件的内容一、MOTOR的种类二、SRD的特点及应用三、SRD的驱动原理四、SRD控制策略# note 1. PMSM : Permanent Magnet Synchronous Motor 2. BLDC : Brushless DC 3. BLAC : Brushless AC 4. SRM : Switched Reluctance Motor 5. SynRm : Synchronous Reluctance Motor电机交流电机直流电机感应式电机同步电机通用电机磁极电机单相三相 永磁同步电机(BLDC, BLAC) 开关磁阻电机 同步磁阻电机旋转式直线式

2、1、 电机的种类 1.1 两类不同原理的电动机 电机可以根据转矩产生的原理划分电磁作用原理产生转矩的电机磁阻变化原理产生转矩的电机运动是定、转子两个磁场相互作用的结果相互作用产生使两个磁场趋于同向的电磁转矩,这类似于两个磁铁的同极性相排斥、异极性相吸引的现象目前大部分电机都是遵循这一原理,例如一般的直流电机和交流电机。运动是由定、转子间气隙磁阻的变化产生的当定子绕组通电时,产坐一个单相磁场,其分铀要遵循“磁阻最小原则”,即磁通总要沿着磁阻最小的路径闭合。因此,当转子轴线与定子磁极的轴线不重合时,便会有磁阻力作用在转子上并产生转矩使其趋向于磁阻最小的位置。即两轴线重合位置,这类似于磁铁吸引铁质物

3、质的现象开关磁阻电机就是属于这一类型的电机。1.2 交流永磁同步电机1.2.1 交流永磁同步电机控制结构1.2.2 交流永磁同步电机控制原理电磁场1.2.3 交流永磁同步电机控制要求到日前为止,在SRD系统的开发研制方面,英国一直处于国际领先地位。除英国外,美国、中国、加拿大、印度、韩国等国家也都开展了SRD系统的研究工作从此,世界上大批学者投入到SR电机的研究领域1980年,Lawrenson及其同事在ICEM会议上,发表著名论文“开关磁阻调速电动机”,系统地介绍了他们的工作成果,阐述了SR电机的原理及设计特点,在国际上奠定了现代SR电机的地位,这也标志着SRD正式得到国际认证最早文献却可追

4、溯到1838年,英格兰学者Davidson制造了一台用以推动蓄电池机车的驱动系统70年代左右,英国Leeds大学步进电机和磁阻电机研究小组首创了一台现代开关磁阻电机的雏形2开关磁阻电机发展历史通过30多年的研究和改进,SRD的性能不断提高,目前已能在数百瓦到数百千瓦的功率范围内使其性能不低于其他形式的电机2.1 SRD的应用 开关磁阻电动机(Switched Reluctance Drive :SRD)是继变频调速系统、无刷直流电动机调速系统之后发展起来的最新一代无级调速系统,是集现代微电子技术、数字技术、电力电子技术、红外光电技术及现代电磁理论、设计和制作技术为一体的光、机、电一体化高新技术

5、。它具有调速系统兼具直流、交流两类调速系统的优点。英、美等经济发达国家对开关磁阻电动机调速系统的研究起步较早,并已取得显著效果,产品功率等级从数w直到数百kw,广泛应用于家用电器、航空、航天、电子、机械及电动车辆等领域。 2.2 2.3 总体影响 2.4 SRD机械结构下面通过一个开关磁阻电动机原理模型来介绍工作原理电机的定子铁芯有六个齿极,由导磁良好的硅钢片冲制。电机的转子铁芯有四个齿极,由导磁良好的硅钢片冲制。 由于定子与转子都有凸起的齿极,这种形式也称为双凸极结构。在定子齿极上绕有线圈(定子绕组),用来向电机提供工作磁场。在转子上没有线圈,这是磁阻电机的主要特点。 2.5电动机定、转子实

6、际结构 2.62.6.12.6.12.7开关磁阻电机的优缺点SRD电机转子上没有任何形式的绕组、永磁体、滑环等,定子上只有简单的集中绕组,绕组端部较短,没有相间跨接线,因此SR电机的结构比鼠笼式感应电动机还要简单。SR电机的材料利用系数高,与直流电机甚至感应电机相比,体积小、坚固、维护量小。由于SR电机的转矩与电流极性无关,只需要单方向的电流激励,因此在理论上功率变换器电路中每相可以只用一个可控开关元件,而且每个可控开关元件都与电机绕组串联,不会出现像交流电机PWM逆变器那样有电源直通短路的危险,所以功率变换器电路简单,可靠性高。SR电机转子上无绕组,系统在低速运行时,不仅转矩大,而且转子发热

7、不严重。SRD系统可以通过对电流的导通、断开以及电流幅值等的控制,易于实现系统的软启动,四象限运行和宽广的恒功率范围。SRD系统的容错能力强,在缺相的情况下仍然能可靠运行。SR电机原有的转矩脉动大、噪声大的缺点通过技术的进步也已经可以解决。192.7.1SRD的特点2.82.8.1电动汽车用开关磁阻电机三相SRM五相SRM2.8.32.9SRD的研究方向SR电机设计研究:1、减小转矩脉动及噪声,电机的振动的研究2、相数的研究与选择3、电机铁耗、效率分析SR电机的控制策略研究: 最优控制,减小转矩脉动、降低噪声具有较高动态性能、算法简单、可抑制参数变化、扰动及各种不确定性干扰的新型控制策略智能控

8、制策略SR电机的无位置传感器控制SR电机的振动、噪声研究SR电机应用研究:电动车、发电机、一体化电机等变换器方案确定和主开关元器件选择微处理器和专用集成电路的应用工作原理结构特点3开关磁阻电机原理 在讲电动机工作原理时常用通电导线在磁场中受力来解释电动机旋转的道理,磁阻电机转子上没有绕组,那是靠什么力推动转子转动呢? 磁阻电动机是利用磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用磁引力拉动转子旋转。 下面通过图示来说明转子的工作原理,下面是磁阻电动机的正视图,定子六个齿极上绕有线圈,径向相对的两个线圈是连接在一起的,组成一“相”,该电机有3相,结合定子与转子的极数就称该电机为三相6 /

9、 4结构。在下图标注的A、B、C相线圈仅为后面分析磁路带来方便,并不是连接三相交流电。 在下面有一组磁阻电动机运转原理动画的截图,从中我们将看到磁阻电动机是如何转动起来的,图中红色的线圈是通电线圈,黄色的线圈没有电流通过;通过定子与转子的深蓝色线是磁力线;把转子启动前的转角定为0度。从左面图起,A相线圈接通电源产生磁通,磁力线从最近的转子齿极通过转子铁芯,磁力线可看成极有弹力的线,在磁力的牵引下转子开始逆时针转动;中间图是转子转了10度的图,右面图是转到20度的图,磁力一直牵引转子转到30度为止,到了30度转子不再转动,此时磁路最短。 3.1、 开关磁阻电机原理为了使转子继续转动,在转子转到3

10、0度前已切断A相电源在30度接通B相电源,磁通从最近的转子齿极通过转子铁芯,见下左图,于是转子继续转动。中间图是转子转到40度的图,右面图是转到50度的图,磁力一直牵引转子转到60度为止。在转子转到60度前切断B相电源在60度时接通C相电源,磁通从最近的转子齿极通过转子铁芯,见下左图。转子继续转动,中间图是转子转到70度的图,右面图是转到80度的图,磁力一直牵引转子转到90度为止。当转子转到90度前切断C相电源,转子在90度的状态与前面0度开始时一样,重复前面过程,接通A相电源,转子继续转动,这样不停的重复下去,转子就会不停的旋转。这就是磁阻电动机的工作原理。由于是运用了利用磁阻最小原理,故称

11、为磁阻电动机,又由于线圈电流通断、磁通状态直接受开关控制,故称为开关磁阻电动机。3.1.1开关磁阻电机原理向线圈供电的开关是用开关晶体管进行的,下面就是三相线圈与开关晶体管的连接示意图,BG1、BG2、BG3是三个开关晶体管,分别控制三相线圈A、B、C的电流通断,三极管旁边并联的二极管是用来续流的。由于电机靠磁阻工作,跟磁通方向无关,即跟电流方向无关,故在上面运行图中没有标明磁力线的方向。A、B、C各相线圈轮流通电似乎简单,实际情况要复杂些,线圈切断电源后产生的自感电流不会立即消失,要提前关断电源进行续流;为加大力矩相邻相线圈有电流的时间会有部分重合;调节电动机的转速、转矩也要调整开关时间,各

12、相线圈开通与关断时间与转子定子间的相对位置直接相关,故电机还装有转子位置检测装置为准时开关各相线圈电流提供依据,何相线圈何时通断必须根据转子转到的位置与控制参数决定。3.1.2开关磁阻电机原理3.1.3开关磁阻电机的非线性特性 以上分析都是在线性条件下进行的。实际电机磁路为非线性。磁场分布3.2 SRD交流电机控制原理3.2.1 SRM 功率变换器功率变换器是直流电源和SRM的接口,起着将电能分配到SRM绕组中的作用,同时接受控制器的控制。 由于SRM遵循“最小磁阻原理”工作,因此只需要单极性供电的功率变换器。功率变换器应能迅速从电源接受电能,又能迅速向电源回馈能量。对功率变换器主电路的要求

13、:(1)较少数量的主开关元件;(2)可将全部电源电压加给电动机相绕组;(3)主开关器件的电压额定值与电动机接近;(4)具备迅速增加相绕组电流的能力;(5)可通过主开关器件调制,有效地控制相电流;(6)能将能量回馈给电源。3.3 主电路常见形式1、双开关型每相有两只主开关和两只续流二极管。当两只主开关VT1和VT2同时导通时,电源US 向电机相绕组供电 ;当VT1和VT2同时关断时,将电机的磁场储能以电能形式迅速回馈电源,实现强迫换相。双开关型电路特点:1)适用于任意相数SR电机2)相控独立性:独立3)相电压=电源电压4)器件数量多 我司三相SRD 12/8极电机常采用双开关型主电路双开关型主电

14、路又称为不对称半桥型主电路3.3 主电路常见形式2双绕组型电路特点主开关S1导通时,电源对主绕组A供电;当其关断时,靠磁耦合将主绕组A的电流转移到副绕组,通过二极管D1续流,向电源回馈电能,实现强迫换相。早期使用的双绕组结构,每相有主、副两个绕组,主、副绕组双线并绕,同名端反接,其匝数比为1:1。3.3 主电路常见形式双绕组型缺点:1)由于主、副绕组之间不可能完全耦合,在S1关断的瞬间,因漏磁及漏感作用,其上会形成较高的尖峰电压,故S1需要有良好的吸收回路。2)由于采用主、副两个绕组,因而电机槽及铜线利用率低。铜耗增加、体积增大。优点:适用于任何相数的SRM,尤其适宜于低压直流电源供电场合3.

15、3 主电路常见形式3电容分压型 (电源分裂式)两个相串联的电容C1和C2将电源电压一分为二,构成中点电位。每相只有一个主开关S和一只续流二极管D。 当S1导通时,上侧电容C1对A相绕组放电,电源对A相供电,经下侧电容C2构成回路;当S1关断时,A相电流经D1续流,向下侧电容C2充电。 3.3 主电路常见形式电容分压型电路的特点1)只适用于偶数相SR电机2)主开关数较少3)相控独立性:不独立4)电源利用率低,每相电压为电源电压的1/2。5)需限制中点电位漂移3.3 主电路常见形式H桥型 该变换器比四相电容分压型功率变换器主电路少了两个串联的分压电容,换相相的磁能以电能形式一部分回馈电源,另一部分

16、注入导通相绕组,引起中点电位的较大浮动。它要求每一瞬间必须上、下各有一相导通。工作制:AB-BC-CD-DA3.3 主电路常见形式H桥型电路的特点1)只适用于4的倍数相SR电机2)主开关数较少3)相控独立性:不独立4)相绕组电压浮动5)本电路特有的优点:可以实现零压续流,提高系统的控制性能。H桥型电路为4相SR电机最常用的主电路形式3.3 主电路常见形式3.4 开关磁阻电动机的相数与结构 相数与级数关系1、为了避免单边磁拉力,径向必须对称,所以双凸极的定子和转子齿槽数应为偶数。2、定子和转子齿槽数不相等,但应尽量接近。因为当定子和转子齿槽数相近时,就可能加大定子相绕组电感随转角的平均变化率,这

17、是提高电机出力的重要因素。SR电动机常用的相数与极数组合 相数 3 4 5 6 7 8 9定子极数 6 8 10 12 14 16 18转子极数 4 6 8 10 12 14 16步进角(度) 30 15 9 6 4.28 3.21 2.5 3.5SR电机常用方案相数与转矩、性能关系:相数越大,转矩脉动越小,但成本越高,故常用三相、四相,还有人在研究两相、单相SRM低于三相的SRM 没有自起动能力(4) 5-phase 10 stator pole/8 rotor pole利用永磁体辅助起动的单相SR电动机 3.6 SR电机基本方程与性能分析不计磁滞、涡流及绕组间互感时,m相SR电机系统示意图

18、 J转子与负载的转动惯量 TL负载转矩电路方程第k相绕组的相电压平衡方程:3.6.1磁链方程所以:电阻压降变压器电动势运动电动势(转子位置改变)为电磁转矩Wf为磁场储能,wr为转子机械角速度如果忽略绕组电阻R,则上面的方程可写为:3.6.1磁链方程3.6.2转矩方程 3.6.3基本控制策略A. 低速时的电流斩波控制(Current chopping control- CCC)在电感很小时使绕组开通,电流快速上升。为防止电流过大而损坏电机,当电流达到最大值Imax时,使绕组关断,电流开始衰减,当电流衰减咸至Imin时,绕组重新开通。在最大电感出现之前必须将绕组关断,以免电流延续到负转矩区。B.

19、高速时的角度位置控制(Angular position control-APC)高速时,由于反电势大,电流受到限制,上升较慢。当到达最大值后,因电感的增加,电流返而下降。同样,为避免电流延续到负转矩区,绕组要在电感到达最大值之前关断。速度越高,要关断的越早。 3.6.3基本控制策略 3.6.3基本控制策略C.电压斩波控制(Voltage Control,简称VC) 在导通区间内,使功率开关按PWM方式工作。其脉冲周期T固定,占空比T可凋。在Tt内,绕组加正电压,T内加零电压或反电压。改变占空比,则绕组电压的平均值U变化,绕组电流也相应变化,从而实现转速和转矩的调节,这就是电压斩波控制 3.6.

20、4当前基本控制策略_选择和应用1、高速角度控制,低速电流斩波控制 低速电流斩波控制电流脉冲窄而尖,转矩脉动和电流峰值大:若采用电流斩波控,则在aoff 后,续流过程较长,影响出力和效率。解决方法是在低速电流斩波控制时结合角度控制。当转速提高时,使 off适当提前。2、变角度电压斩波控制 电压斩波调节电动机的转速和转矩,并使on和off随转速改变。电动机电动工作,希望尽量将电流波形置于电感上升段。由于电流的建立过程和续流消失的过程需要一定的时间,因而电流波形总比通电区域onoff有所滞后。转速越高,通电区间对应的时间越短,电流波形滞后越多,因此要求通电区间提前的角度就越多。 此控制方式转速转矩调

21、节范围大,高低速均有较好的电动机性能,亦不存在两种控制方式的转换问题。缺点是控制方式的实现较复杂,对功率开关的工作频率要求较高,否则斩波噪声较大。3.6.5理想线性模型的SR电动机分析 线性模型:不计磁路饱和,假定绕组电感与电流无关,此时电感只与转子位置有关1 0 2 3 0 4 5 SR电机相电感随转子位置变化 = 1位置转子凹槽前沿与定子磁极前沿相遇位置statorrotor13.6.5理想线性模型的SR电动机分析 stator=0o位置rotor定子磁极轴线与转子凹槽中心重合=0o3.6.5理想线性模型的SR电动机分析 stator =2位置rotor转子磁极前沿与定子磁极前沿相遇位置2

22、3.6.5理想线性模型的SR电动机分析 stator = 3位置转子磁极前沿与定子磁极前沿重合位置rotor33.6.5理想线性模型的SR电动机分析 stator =4位置rotor转子凹槽前沿与定子磁极后沿重合位置43.6.5理想线性模型的SR电动机分析 stator =5位置rotor转子凹槽前沿与定子磁极前沿相遇位置53.6.5理想线性模型的SR电动机分析 1 0 2 3 0 4 5 =0 定子磁极轴线与转子凹槽中心重合1(5) 转子凹槽前沿与定子磁极前沿相遇位置2 转子磁极前沿与定子磁极前沿相遇位置3 转子磁极前沿与定子磁极前沿重合位置4 转子凹槽前沿与定子磁极后沿重合位置3.6.5理

23、想线性模型的SR电动机分析 K=(Lmax-Lmin)/(3-2)= (Lmax-Lmin)/s特征:随定、转子磁极重叠的增加和减少,相电感在Lmax 和Lmin之间线性地变化 。Lmin为定子磁极轴线对转子凹槽中心时的电感, Lmax定子磁极轴线对转子磁极轴线的电感 。3.6.5理想线性模型的SR电动机分析 3.6.5理想线性模型的SR电动机分析 3.6.5理想线性模型的SR电动机分析 3.7相电流解析分析第k相绕组模型续流结束角3.7相电流解析分析on2 :电感上升,使绕组电流下降off3 : 在电感达最大之前,绕组关断,绕组续流。3z4 (z=2off-on) 在电感下降之前,续流结束。

24、否则会产生反向转矩3.8典型电流波形不同开通角下电流波形开通角越小,电流幅值越大,续流时间越长。不同关断角下电流波形3.8典型电流波形变化趋势:结构一定,在on和off不变时,绕组电流随外加电压的增大而增大,随转速的升高而减小;通过调整开关角和关断角也可以影响绕组电流,从而就间接地使电动机的电磁转矩增大。 影响绕组电流的因素:外加电源电压Us、角速度r、开通角on、关断角off、最大电感Lmax、最小电感Lmin、定子极弧s等。 线性模型忽略了许多因素,计算结果误差很大,只能定性地说明影响电流、转矩的因素。3.8典型电流波形SR电机的基速SR电机的固有机械特性类似与直流电机的串励特性。对给定S

25、R电机,在最高电压Us和最大允许电流条件下,存在一个临界角速度。即SR电机得到最大转矩的最高角速度,称为基速。3.9 SR电机固有机械特性机械运动方程:式中Te电磁转矩;J 系统的转动惯量;K摩擦系数;TL负载转矩。 4SR电机控制策略:*基速以下,电流斩波控制(CCC),输出恒转矩可控量为:Us、 on 、off控制法1:固定on ,off,通过电流斩波限制电流,得到恒转矩控制法2:固定on ,off,由速度设定值和实际值之差调制Us,进而改变转矩*基速以上,角度位置控制(APC),输出恒功率设定电流上、下幅值的斩波图 设定电流上限和关断时间斩波图 4SR电机控制策略:控制方式的合理选择 4SR电机控制策略:SR电动机的起动运行 四相SR电动机的矩角特性 两相起动时合成转矩波形 SR电动机的四象限运行控制 SR电动机正反转控制原理 4SR电机控制策略:制动状态下L

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论