版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、绝密 启用前2017年广州市普通高中毕业班综合测试(一)理科数学注意事项:1本试卷分第卷(选择题)和第卷(非选择题)两部分。答卷前,考生务必将自 己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应 位置填涂考生号。2回答第卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑, 如需改动,用橡皮擦干净后,再选涂其它答案标号。写在本试卷上无效。3回答第卷时,将答案写在答题卡上。写在本试卷上无效。4考试结束后,将本试卷和答题卡一并交回。第卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。(1)复数的共轭复数是 (A) (B
2、) (C) (D)(2)若集合,则 (A) (B) (C) (D)(3)已知等比数列的各项都为正数, 且成等差数列, 则的值是 (A) (B) (C) (D) (4)阅读如图的程序框图. 若输入, 则输出的值为 (A) (B) (C) (D) (5)已知双曲线的一条渐近线方程为,分别 是双曲线的左,右焦点, 点在双曲线上, 且, 则等于(A) (B) (C)或 (D)或(6)如图, 网格纸上小正方形的边长为1, 粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为, 则该几何体的俯视图可以是 (7)五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的
3、硬币. 若硬币正面朝上, 则这个人站起来; 若硬币正面朝下, 则这个人继续坐着. 那么, 没有相邻的两个人站起来的概率为(A) (B) (C) (D)(8)已知,分别是椭圆的左, 右焦点, 椭圆上存在点 使为钝角, 则椭圆的离心率的取值范围是(A) (B) (C) (D)(9)已知成立, 函数是减函数, 则是的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件(10)九章算术中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四 个面都为直角三角形的三棱锥称之为鳖臑若三棱锥为鳖臑, 平面, ,, 三棱锥的四个顶点都在球的球面上, 则球的表 面积为
4、(A) (B) (C) (D)(11)若直线与函数的图象相交于点, 且,则线段与函数的图象所围成的图形面积是(A) (B) (C) (D)(12)已知函数, 则的值为(A) (B) (C) (D)第卷 本卷包括必考题和选考题两部分。第1321题为必考题,每个考生都必须作答。第2223题为选考题,考生根据要求作答。二、填空题:本小题共4题,每小题5分。(13)已知,且,则向量与向量的夹角是 . (14)的展开式中各项系数和为,则的系数为 .(用数字填写答案)(15)已知函数 若, 则实数的取值范围是 .(16)设为数列的前项和, 已知, 对任意N, 都有, 则N)的最小值为 . 三、解答题:解答
5、应写出文字说明、证明过程或演算步骤。(17)(本小题满分12分) 如图, 在中, 点在边上, . () 求; () 若的面积是, 求.(18)(本小题满分12分)近年来,我国电子商务蓬勃发展. 2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统. 从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次. () 根据已知条件完成下面的列联表,并回答能否有99%的把握认为“网购者对 商品满意与对服务满意之间有关系”?对服务满
6、意对服务不满意合计对商品满意80对商品不满意合计200 () 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满 意的次数为随机变量,求的分布列和数学期望.附:(其中为样本容量)0.150.100.050.0250.0102.0722.7063.8415.0246.635(19)(本小题满分12分)如图1,在直角梯形中,/,, 点是边的中点, 将沿折起,使平面平面,连接, 得到如图2所示的几何体. () 求证:平面;() 若,二面角的平面角的正切值为,求二面角 的余弦值. 图1 图2(20)(本小题满分12分) 过点作抛物线的两条切线, 切点分别为, . () 证明: 为
7、定值;() 记的外接圆的圆心为点, 点是抛物线的焦点, 对任意实数, 试 判断以为直径的圆是否恒过点? 并说明理由.(21)(本小题满分12分) 已知函数. () 若函数有零点, 求实数的取值范围; () 证明:当,时, . 请考生在第2223题中任选一题作答,如果多做,则按所做的第一题计分。(22)(本小题满分10分)选修44:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数. 在以坐标原点为极点, 轴正半轴为极轴的极坐标系中, 曲线() 求直线的普通方程和曲线的直角坐标方程;() 求曲线上的点到直线的距离的最大值.(23)(本小题满分10分)选修45:不等式选讲已知函数. () 若,
8、求实数的取值范围;() 若R , 求证:.2017年广州市普通高中毕业班综合测试(一)理科数学试题答案及评分参考评分说明:1本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则2对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分3解答右端所注分数,表示考生正确做到这一步应得的累加分数4只给整数分数选择题不给中间分一、选择题 (1)B (2)C (3)A (4)B (5)D (6)D
9、(7)C (8)A (9)B (10)C (11)A (12)B二、填空题 (13) (14) (15) (16)三、解答题(17) 解:() 在中, 因为, 由余弦定理得, 1分 所以, 整理得, 2分 解得. 3分 所以. 4分 所以是等边三角形. 5分 所以 6分() 法1: 由于是的外角, 所以. 7分 因为的面积是, 所以.8分 所以. 9分 在中, , 所以. 10分 在中, 由正弦定理得, 11分 所以.12分法2: 作, 垂足为, 因为是边长为的等边三角形, 所以. 7分 因为的面积是, 所以. 8分 所以. 9分 所以. 在Rt中, , 10分所以, . 所以 11分. 12
10、分(18)解:() 列联表:对服务满意对服务不满意合计对商品满意8040120对商品不满意701080合计15050200 2分 3分 因为, 所以能有99%的把握认为“网购者对商品满意与对服务满意之间有关系”. 4分() 每次购物时,对商品和服务都满意的概率为,且的取值可以是0,1,2,36分. 10分0123 的分布列为:11分所以. 12分或者:由于,则. 12分(19) 解:() 因为平面平面,平面平面, 又,所以平面. 1分 因为平面,所以. 2分 又因为折叠前后均有,, 3分所以平面. 4分 () 由()知平面,所以二面角的平面角为. 5分又平面,平面,所以.依题意. 6分因为,所
11、以. 设,则. 依题意,所以,即. 7分 解得,故. 8分法1:如图所示,建立空间直角坐标系,则,, 所以,.由()知平面的法向量.9分设平面的法向量由得令,得,所以. 10分所以. 11分由图可知二面角的平面角为锐角,所以二面角的余弦值为. 12分法2 :因为平面,过点作/交于,则平面. 因为平面,所以. 9分过点作于,连接,所以平面,因此. 所以二面角的平面角为. 10分由平面几何知识求得, 所以. 所以cos=. 11分所以二面角的余弦值为. 12分(20)解: () 法1:由,得,所以. 所以直线的斜率为. 因为点和在抛物线上, 所以,. 所以直线的方程为. 1分 因为点在直线上, 所
12、以,即. 2分 同理, . 3分 所以是方程的两个根. 所以. 4分 又, 5分 所以为定值. 6分法2:设过点且与抛物线相切的切线方程为, 1分由消去得,由, 化简得. 2分所以. 3分由,得,所以. 所以直线的斜率为,直线的斜率为. 所以, 即. 4分 又, 5分 所以为定值. 6分() 法1:直线的垂直平分线方程为, 7分 由于, 所以直线的垂直平分线方程为. 8分 同理直线的垂直平分线方程为. 9分 由解得, , 所以点. 10分 抛物线的焦点为 则 由于,11分 所以 所以以为直径的圆恒过点 12分另法: 以为直径的圆的方程为 11分把点代入上方程,知点的坐标是方程的解.所以以为直径
13、的圆恒过点 12分法2:设点的坐标为, 则的外接圆方程为, 由于点在该圆上, 则, . 两式相减得, 7分 由()知,代入上式得 , 8分 当时, 得, 假设以为直径的圆恒过点,则即, 得, 9分 由解得, 10分所以点. 11分当时, 则,点.所以以为直径的圆恒过点 12分(21)解:()法1: 函数的定义域为.由, 得. 1分 因为,则时, ;时, . 所以函数在上单调递减, 在上单调递增. 2分 当时, . 3分 当, 即时, 又, 则函数有零点. 4分所以实数的取值范围为. 5分法2:函数的定义域为.由, 得. 1分令,则.当时, ; 当时, .所以函数在上单调递增, 在上单调递减.
14、2分故时, 函数取得最大值. 3分因而函数有零点, 则. 4分所以实数的取值范围为. 5分 () 令, 则. 当时, ;当时, . 所以函数在上单调递减, 在上单调递增. 当时, . 6分 于是,当时, 7分 令, 则. 当时, ;当时, . 所以函数在上单调递增, 在上单调递减. 当时, . 8分 于是, 当时, 9分 显然, 不等式、中的等号不能同时成立. 故当时, . 10分 因为所以. 所以. 11分 所以, 即. 12分(22)解: () 由 消去得, 1分 所以直线的普通方程为. 2分 由, 3分 得. 4分 将代入上式, 得曲线的直角坐标方程为, 即. 5分 () 法1:设曲线上的点为, 6分则点到直线的距离为7分8分 当时, , 9分 所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度离婚房产交易资金监管与安全保障协议3篇
- 矿山工程合同范本安全
- 主题乐园景观栈桥安装合同
- 建筑装饰劳务合同范本
- 药品实验室药品研发
- 编辑出版人员工作手册
- 2025版生态农业用地房地产抵押典当合同范本3篇
- 大型机场设备安装龙门吊租赁协议
- 知识产权服务授权书招投标
- 广告公司创意人才聘用合同范例
- 公安学基础智慧树知到期末考试答案章节答案2024年山东警察学院
- 《受理宾客退房》教学设计
- 搪瓷制品的电磁屏蔽性能与应用研究
- DB44-T 2480-2024 铝及铝合金深井铸造安全技术规范
- GB/T 15115-2024压铸铝合金
- 教科版小学二年级上册科学期末测试卷附参考答案(满分必刷)
- 中医适宜技术发展现状
- 【温病学】叶天士《温热论》
- 部编人教版四年级数学上册期末考试卷(可打印)
- 一例阿尔茨海默病患者的护理查房
- 公路工程有关费率
评论
0/150
提交评论