版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、單元(4)-A統計基礎及品質統計資料數據基礎統計學生產製造環境品質統計圖表製程才干分析SPC統計製程控制資料及數據他想瞭解什麽?資訊源:分組離散型名義型順序型間距型“資料本身並不能提供資訊 必須對資料加以處理以後才干得到資訊, 而處理資料的工具就是統計學. 衡量連續型比率型 文字的 (A to Z) 圖示的 口頭的 數位的 (0-9)數據FAILPASS計時器 NO-GOGO數量 單價 說明 總價1$10.00$10.003$1.50$4.5010$10.00$10.002$5.00$10.00裝貨單 離散型資料和連續型資料電氣電路溫度溫度計連續型離散型卡尺錯誤$連續資料的優勢 連續的離散的信
2、息量少信息量多離散型資料 (通常)分組 / 分類是 /否, 合格 / 不合格不能計算 離散型資料 分級 很少用 很難加以計算 連續型資料 最常見的尺規 計算時要很小心 連續型資料 比例關係 可應用演算法的多數公式 分類 標簽 第一、第二、第三 相對高度 字母順序 123 0g1 = 0g1 0g2 = 0g2 Basic Statistics Display Descriptive StatisticsGraphs Graphical SummaryA2 27.11描画性統計圖形分析總結變數:奥秘中值的95%信賴區間 的95%信賴區間 Anderson-Darling常態測試P值 0.00均值
3、 100.00標準偏向 32.38變異數 1048.78偏度 0.01峰度 -1.63資料量 500.00最小值 41.77第一象限 68.69中值 104.20第三象限 130.81最大值 162.82的95%信賴區間97.5 102.85s的95%信賴區間30.49 34.53中值的95%信賴區間 82.78 117.66資料搜集時的重點How the data are collected affects the statistical appropriateness and analysis of a data set(資料如何搜集可影響統計的適切性). Conclusions from
4、 properly collected data can be applied more generally to the process and output. Inappropriately collected data CANNOT be used to draw valid conclusions about a process. Some aspects of proper data collection that must be accounted for are:The manufacturing environment(製程環境)from which the data are
5、collected. When products are manufactured in batches or lots, the data must be collected from several batches or lots.Randomization(隨機). When the data collection is not randomized, statistical analysis may lead to faulty conclusions.Continuous Manufacturing (連續)occurs when an operation is performed
6、on one unit of product at a time. An assembly line is typical of a continuous manufacturing environment, where each unit of product is worked on individually and a continuous stream of finished products roll off the line. The automotive industry is one example of Continuous Manufacturing. Other exam
7、ples of continuously manufactured product are: television sets, fast food hamburgers, computers.Lot/Batch Manufacturing (批次) occurs occurs when operations are performed on products in batches, groups, or lots. The final product comes off the line in lots, instead of a stream of individual parts. Pro
8、duct within the same lot are processed together, and receive the same treatment while in-process. Lot/Batch Manufacturing is typical of the semiconductor industry and many of its suppliers. Other examples of lot/batch manufactured product include: chemicals, semiconductor packages, cookies.Manufactu
9、ring Environment製造環境In Continuous Manufacturing the most important variation is between partsIn Lot/Batch Manufacturing, the variation can occur between the parts in a lot and between the lots: Product within the same lot is manufactured together. Product from different lots are manufactured separat
10、ely.Because of this, each lot has a different distribution. This is important because Continuous Manufacturing is a basic assumption for many of the standard statistical methods found in most textbooks or QC handbooks. These methods are not appropriate for Lot/Batch Manufacturing. Different statisti
11、cal methods need to be used to take into account the several sources of variation in Lot/Batch Manufacturing.要留意: 連續和批量生產所用的統計方法有些不同With Lot/Batch Manufacturing, each lot has a different mean. Due to random processing fluctuations, these lots will vary even though the process may be stable. This res
12、ults in several “levels of distributions, each level with its own variance and mean: A distribution of units of product within the same lot. A distribution of the means of different lots. The total distribution of all units of product across all lots.LotX12345*Distribution ofIndividual LotDistributi
13、on ofLot MeansOverall Distributionof Combined LotsVariation WithinEach LotVariation Between LotsTotal VariationThe different variances of a Lot/Batch Manufacturing process form a hierarchy called nesting. Data collected from such processes usually have what is called a nested data structure. 1121 2
14、3 4 51 2 3 4 5LOTS班2121 2 3 4 51 2 3 4 5Each of the levels in the nested structure corresponds to a single variance. With a nested data set from this process, we need to take each source of variation into account when collecting data to ensure the total process variation is represented in our data s
15、et:生產線22 22222X12X2212121 , , ;X;X ; XXXX+=+=總 總 總 6原則 變異數可相加, 標準差則不能相加輸入變數變異數相加計算輸出中的總變異數 所以那麽引起的變異數輸入變數引起的變異數輸入變數過程輸出的變異數假设123456LotsWithin is smallsLot is largeprocess has small within-lot variation and large lot-to-lot variation (which is very common), data values from the same lot will be highl
16、y correlated, while data from different lots will be independent: 品質統計圖表直方圖(Histograms)方框圖(Boxplots)柏拉圖(Pareto Diagrams)散佈圖(Scatterplots)趨勢圖(Trend Charts)品質統計圖表 -直方圖(Histograms)Histograms provide a visual description of the distribution of a set of data. A histogram should be used in conjunction wit
17、h summary statistics such as and s.A histogram can be used to: Display the distribution of the data(現示數據的分佈). Provide a graphical indication of the center, spread, and shape of the data distribution (較定性地顯示數據的均值,散佈及形狀). Clarify any numerical summary statistics (which sometimes obscure information).
18、(顯示較模糊的統計結果). Look for outliers - data points that do not fit the distribution of the rest of the data. (顯示異常點) : : . . . : . . : : :.: : . : . : . .:.:.:.:.:.: : . +加侖/分鐘 49.00 49.50 50.00 50.50 51.00點圖分佈 設想有一個泵流量爲50加侖/分鐘的計量泵。按照節拍對泵的實際流量進行了100次獨立測量。畫出各個點,每點代表一個給定值的輸出“事件。當點聚集起來時,泵的實際性能狀況可以看作泵流量的“分佈。
19、 51.350.850.349.849.348.8403020100直方圖分佈 還是這些資料,現在設想將其分組後歸入“區間。泵流量點落入指定區間的次數決定區間條的高度。 頻率加侖/分鐘品質統計圖表 -直方圖(Histograms)150.7149.7154.5149.6155.3149.0160.5149.0155.3149.3149.2153.5145.5161.0151.5154.3150.9152.4150.5152.3144.5151.6151.1151.0147.5150.6147.4150.8148.3146.8148.7147.6153.0.0153.4146.5151.4143
20、.5149.4150.4153.1150.7149.1150.6149.6152.5145.2150.5146.4151.3151.7145.6147.1152.6147.0148.5155.0148.4151.3148.8146.7152.7155.3146.6144.8150.9149.5151.4147.3154.9151.2148.6142.5151.6151.0152.9146.9145.3150.8150.3153.6154.6150.6148.6155.1145.4148.5157.0148.9145.0147.7151.1149.7154.4149.1151.5153.3149
21、.5152.8150.8品質統計圖表 -直方圖(Histograms) Multi-Modal Shape(雙峰): Skewed Shape(偏一邊): Data can be right-skewed or left-skewed. This data is right-skewed the right tail is longer than the left tail. Outliers:特異點練習品質統計圖表 -方框圖(Boxplots)Boxplots are a graphical tool valuable for comparing the distributions of t
22、wo or more groups (e.g., different lots, shifts, operators, etc.). Each distribution on this chart consists of the following: A “box representing the middle 50% of the data values. The length of the “box is called the “Interquartile Range (IQR). Inside the “box is a line representing the median (50t
23、h percentile) of the data. Two “tails which extend out to the minimum and maximum data values (assuming there are no outliers in the data). If the distance between the a data point and the nearer quartile is greater than 1.5xIQR, the data point is labeled as an outlier, and the “tail on that side of
24、 the boxplot is shortened to the outermost data value within 1.5xIQR from the quartile.品質統計圖表 -方框圖(Boxplots)MedianMaximumData Value75thPercentile25thPercentileOutermostdata valueswithin 1.5xIQRof the 75th and25th Percentiles.OutlierNO OUTLIERSIQROUTLIERSMinimumData ValueOutlier1.5xIQR品質統計圖表 -方框圖(Box
25、plots)EXAMPLE : Creating a BoxplotThe figure below is a boxplot of the 100 plating thickness measurements. The histogram for the same data set is displayed for comparison.品質統計圖表 -方框圖(Boxplots)Lot 1Lot 2Lot 3Lot 4Lot 5Lot 6Lot 7149.18144.78146.77167.85144.51134.96152.41151.31147.18150.66164.17144.411
26、34.7146.76150.8145.66145.11168.23146.68.02148.19149.06147.09145.09162.88145.4134.63143.75151.73145.86145.98163.1143.3134.87153.71148.15144.64146.77166.91146.87.34145.13152.55143.67149.9165.78148.61134.6148.54Plating thickness measurements collected from 7 lots of product.品質統計圖表 -方框圖(Boxplots) Multi-
27、Modal Shape: Skewed Shape: Outliers: 練習品質統計圖表 -柏拉圖(Pareto Diagrams)While histograms are used to display the distribution of a set of continuous (measured) data, Pareto diagrams are used to display the distribution of discrete (counted) data, such as different types of defects.Pareto diagrams can als
28、o be used with continuous (measured) data, particularly in displaying variance components analysis results, as we will see later in this course.Pareto diagrams are a useful tool for determining which problems or types of problems are most severe or occur most frequently, hence should be given high p
29、riority for process improvement efforts. Pareto diagrams separate the significant vital few problems from the trivial many to help determine which problems to address first (and which to address later).重點中找重點!Pareto圖分析Pareto 圖根據 frequency 欄的內容判斷各個缺陷影響的大小,並按從大到小的次序陈列。最後一組總是標有 “其他 ,並以默認方式包括一切缺陷的分類計算,這
30、幾類缺陷非常少, 它們占總缺陷的 5% 以下。該圖右側 Y 軸表示占總缺陷的百分比,左側 Y 軸表示缺陷數。紅線 (在螢幕上可以看到) 表示累積百分比,而直方圖表示每類缺陷的頻率 (占總量的百分比) 。在圖的下方列出一切的值 百分比缺陷的Pareto圖 計數 缺陷 計數 274 59 43 19 10 18百分比 64.8 13.9 10.2 4.5 2.4 4.3累積百分比 64.8 78.7 88.9 93.4 93.4 100.0螺釘丟失 夹子丧失襯墊走漏 外殼有缺陷 零件不完好 其他 400300200100 0100806040200百分比%品質統計圖表 -柏拉圖(Pareto Di
31、agrams)Pareto圖分析: 創建一個加權的 Pareto圖 通過指定金額/缺陷或用其他的加權方法,可以給次數加權。列在C1中的缺陷發生次數的價格列在 C3 (value) 中, 價格乘以次數等於這類缺陷的費用 (c4) 。繪製費用cost曲線圖,而不是繪製次數count圖, 這樣可以更好地說明每個缺陷對業務的影響。 缺陷的Pareto圖 缺陷計數 2320.71 1653.00 1230.00 800.00 349.87 155.52 百分比 35.7 25.4 18.9 12.3 5.4 2.4累積百分比 35.7 61.0 79.9 92.2 97.6 100.0螺钉丧失螺釘丟失襯
32、墊走漏外殼有缺陷零件不完好其他600050004000300020001000 0100806040200計數百分比%品質統計圖表 -柏拉圖(Pareto Diagrams)層別Pareto圖: 解釋分組資料 上圖运用了一個 By Variable從屬變數,一切的圖都在一頁上。 下圖运用同樣的命令,沒有從屬變數。 當選擇每頁一張圖時,一切的圖的計數(左軸)刻度一样。 右側的百分比只反映該圖占總體的百分比。這些圖阐明, 70%的記錄缺陷是刮傷和剝落的 (下部),約有一半的缺陷是夜班人員記錄的 (上右圖)。此外,記錄缺陷是刮傷和剝落的比例,對白班和夜班的 來說似乎也差不多。然而,晚班和周末班出現的
33、缺陷樣式是不同的。 裂紋Pareto圖 白班 晚班 夜班 周末班 刮傷剝落其他污點 151050151050151050151050裂紋Pareto圖403020100100806040200缺陷計數 15 13 6 6百分比 37.5 32.5 15.0 15.0 累積百分比 35.5 70.0 85.0 100.0刮伤拨落其他污点計數 計數計數計數計數百分比%品質統計圖表 -柏拉圖(Pareto Diagrams)練習品質統計圖表 -散佈圖(Scatterplots)Until now, all the graphical tools weve discussed have been fo
34、r examining the distribution of a single process characteristic. The scatterplot is a graphical tool for examining the relationship between two process characteristics. A scatterplot is an X-Y plot of one variable versus another.Each unit of product usually has many characteristics, process input va
35、riables, etc. One objective might be to see whether two variables or characteristics are related to each other (i.e., to see what happens to one of the variables when the other variable changes). This relationship between two variables is called correlation. Scatterplots can help us answer this type
36、 of question.品質統計圖表 -散佈圖(Scatterplots)Acid AgeEtch RateAcid AgeEtch RateAcid AgeEtch Rate4.0134.5134.0154.5181.5302.5233.0183.5191.0313.5195.575.044.0122.0253.5212.0241.0292.0261.0283.0205.593.0195.064.5145.095.592.5272.5251.5301.531品質統計圖表 -散佈圖(Scatterplots)In addition to telling us whether or not t
37、wo variables are related, scatterplots can tell us how they are related, and the strength of the relationship:Strong Positive Correlation強正相關No Correlation無關Weak Negative Correlation弱負相關Weak Positive Correlation弱正相關Strong Negative Correlation強負相關品質統計圖表 -散佈圖(Scatterplots)In addition, scatterplots are
38、 an excellent tool for determining the type of relationship between the two variables, as well as looking for outliers:Linear Relationship線性相關Outliers 特異Non-Linear Relationship非線性相關品質統計圖表 -散佈圖(Scatterplots)Correlation and CausationWe must always take care not to confuse correlation with causation. T
39、he fact that two characteristics are correlated does not prove that one causes the other. Both may be related to some other factor which is the true root cause.Number of TelevisionsNumber ofTrafficAccidents19701990But is there a cause-effect relationship between the two? Did the increase in TVs caus
40、e the number of accidents to go up? (Not likely.) Did the increase in traffic accidents cause people to buy more TVs? (Not likely, either.)練習品質統計圖表 -趨勢圖(Trend Charts)Trend ChartsStability: A process is stable if its mean and standard deviation are constant and predictable over time.A disadvantage of
41、 histograms and normal probability plots is that they cannot be used to determine whether the process is stable over time. A plot of the data in time order will allow us to do that.These time-ordered plots, called Trend charts and Control charts are essential when examining the stability of a distri
42、bution over time. A trend chart or a control chart can detect instability if it exists.Control charts, which are a special kind of trend chart, are discussed in detail separately in a later course module.可看出穩定性及預測性品質統計圖表 -趨勢圖(Trend Charts)The table below contains average plating thickness measuremen
43、ts taken from 21 lots of product. Below that is a trend chart of the data.Lot #Plating ThicknessLot #Plating ThicknessLot #Plating Thickness1151.98143.815149.22147.49152.716147.53155.810147.417151.94151.711152.718141.95149.212143.819152.76153.813.120147.47159.914142.521157.3練習品質統計圖表 - NoisyThe resul
44、ts of a statistical analysis can be seriously affected by the failure of the data to meet certain required assumptions. One of the most common assumptions is that the data values are independent and that they come from a Normal distribution. This assumption can be violated in several ways: Outliers
45、(points that do not fit the rest of the distribution) in the data, Non-Normal-shaped distributions (multi-modal or skewed distributions),Data that exhibit these characteristics can be thought of as noisy data. The procedures in this section provide techniques for effective detection and analysis of
46、noisy data.雜訊品質統計圖表 - NoisyBoxplotsTrend ChartHistogramScatterplotNormal Prob. Plot品質統計圖表 - NoisyRecommended strategy for handling outliers:1. Identify the outliers using the methods described in the following pages. If possible, find the causes of the outliers. Remove the outliers with identified c
47、auses from the data set(找缘由).2. If all the outliers can be explained, then analyze the data as usual.3. However, if there are any outliers that do not have explanations, analyze the data twice: including the outliers, excluding the outliers.See if and how the analysis results differ.製程才干分析當製程開始產生變異時
48、,其統計分佈圖的形狀也開始變化。通常變化不外下面三種根本狀況的組合:整體製程數據漂移散佈變寬中心值漂移假设將每日之統計分佈串起來一同看,則又可看到更多變異現象,普通可分為兩種如下: 1.突發變異:製程中有特殊或突發缘由而產生變異,呵斥不穩定。例:每日生產參數設定漂移。2.共同變異:製程中只需共同缘由的變異此種現象是穩定的不良。例:模具尺寸超差。瞭解以上根本觀念後便開始参与控制的觀念。作控制時参与規格上下線, 超出規格則視為不良如下圖:製程才干好,中心值在目標上且分佈均在規格內製程才干尚可,中心值在目標上,分佈均在規格內但略微太分散製程才干尚可,中心值有漂移,但分佈尚在規格內製程才干不好,中心值
49、雖在目標,但分佈超出規格外製程才干不好,中心值不在目標,分佈雖集中但超出規格外製程才干最差,中心值不在目標,分佈不集中且超出規格外計算Ca,Cp,Cpk公式規格中心mLSL+ 3 - 3 製程寬度6 規格寬度TUSLSuSLCa: Capability of Accuracy準確度:實際中心Ca-=Xm(T/2)-XmXCa只對雙邊規格適用.分級標準如下:等級 Ca 值A Ca 12.25%B 12.25% Ca 25%C25%50%計算Ca,Cp,Cpk公式規格中心mLSL+ 3 - 3 製程寬度6 規格寬度TUSLSuSLCp: Capability of Precision精確度:實際中
50、心-XmX當僅有下限時:Cp = ( -SL)/(3)對雙邊規格: Cp = T/(6)當僅有上限時: Cp = (Su- )/(3)XX 等級Cp值ACp1.33B 1.00 Cp1.33C0.67Cp1.00DCp0.67分級標準如下: 計算Ca,Cp,Cpk公式Cpk: 指制程才干參數, 是Cp和Ca的綜合.對雙邊規格: Cpk=(1-Ca)*Cp= Min(Su- )/(3), ( -SL)/(3) 對單邊規格, 可以認為T為, 則 Ca= ( -)/ (T/2)= 0 Cpk= (1-Ca)*Cp= Cp等級Cpk值評价ACpk1.33理想B1.00Cpk1.33正常CCpk1.0缺
51、乏 分級標準如下:XXX練習SPC統計製程控制SPC介紹SPC是用於研讨變動的一種根本工具,它运用統計信號監測並改善過程績效。該工具可用於任何領域:製造業、商業,銷售業等等SPC是統計程式控制 Statistical Process Control的縮寫。大多數公司是將 SPC用於最終産品 (Y)上, 而不是用於過程特徵 (X)。第一步是运用統計方法控制公司的輸出。然而,只需我們將重點放在控制輸入 (X),而不是控制輸出 (Y)時, 我們才干認識到我們在提高質量、生産率及降低本钱上的努力收效有多大。什麽是統計製程控制SPC一切過程都有固有變動由於普通缘由和非固有變動由於特殊缘由, 我們运用SP
52、C來監測並改善過程。 SPC的运用使我們能夠通過失控信號發現特殊缘由。這些失控信號無法說明過程失控的缘由,只能阐明過程處於失控狀態。控制圖表是在統計上從時間上跟蹤過程和産品參數的方法。控制圖表中包括反映過程隨機變動固有限值的上下控制限值。 這些限值不應與 顧客規定限值相比較 。什麽是統計製程控制續根本統計原理,控制圖表能夠用於識別過程變數中的非固有非隨機型式。當控制圖表出現非隨機型式信號時,我們就可以知道特殊缘由引起的變動改變了過程。我們採用措施修正控制圖表中非隨機型式,這是胜利运用 SPC的關鍵。控制限值是以爲衡量的Y或X建立 3限值爲基礎。沒有正確訓練X或Y的SPC=牆紙警示信號用於發現缺
53、陷。一旦生産成爲1#優先度,操作者將學會忽略或切警示信號!實施S.O.P以發現缺陷。這種措施不能短期或長期坚持。用經過充分訓練的操作者對X或Y進行統計程式控制SPC。操作者已受過訓練並瞭解SPC的規定,但管理層不准許他們停下來或進行研讨。第3種類型修正措施=檢查:實施短期遏制政策的措施,這種措施有能够發現由錯誤條件引起的缺陷。常用的遏制政策是審查或100%檢查。對遵守規定的操作者和職員進行充分訓練,用他們對X或Y進行統計程式控制SPC 。一旦圖表顯示出現問題,每個人瞭解SPC規定,並由於識別和消除特殊缘由而赞同停顿。第2種類型修正措施=標記:對那些錯誤條件已經出現的過程進行改善。該標記使設備停
54、工,以免缺陷繼續發展。第1種類型修正措施=防範措施:改善過程,消除錯誤條件發生的情況,缺陷永遠也不會發生。在防錯或設計變更方式上,這也可作爲長期的修正措施。控制方法最差最優過程改善及控制圖過程衡量系統輸入輸出1. 發現可指定的缘由4. 驗證結果3.實施修正措施2. 確定根本缘由控制圖的益處用於提高生産率的已證實的技術有效防範缺陷防止不用要的過程調整提供診斷資訊提供關於過程才干的資訊控制圖類型控制圖有許多類型,但是它們的根本原理是一样的利用 SPC和過程目標方面的知識選擇正確的類型根據以下幾方面選擇控制圖類型:資料類型: 屬性還是變數?採樣容易:樣本同質性資料分佈: 正常或非正常?分組大小: 不
55、變的或變化的?其他考慮控制圖的組成KVOP的X均值圖20100615605595585樣本數X=599.1UCL=613.6LCL=584.6控制下限UCL = m +ks中線 = mLCL = m - k s其中m = 樣本均值s = 樣本標準偏向k = 控制限制距中線的差值 (通常爲 3)記住:控制限值與顧客規定限值無關控制上限中線 樣本均值常用控制圖類型(X-S)常用控制圖類型(X-R)短期N 30For control charts with N 30 lots, rather than the usual UCL (upper control limit) and LCL (lowe
56、r control limit), there are dual sets of control limits: Outer Control Limits(3s). Inner Control Limits (1s).短期N 30Any point outside either of the outer control limits indicates an unstable process. All points falling between both inner control limits indicates a stable process. If any points fall inside either “uncertainty zone (but none are outside the outer control limits), we cannot say whether or not the process is stable, because we do not ye
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版绿化工程建设工程施工合同
- 二零二五年度水利工程安装工程安全责任合同
- 2024版跨国文化演艺推广合同
- 二零二五年度新能源储能项目融资连带责任担保合同3篇
- 二零二五年度版权质押合同标的解释3篇
- 2024年高校教师劳务合同书
- 2024版行车采购合同
- 2024版美容美发产品购销简单合同范本
- 2024青岛家装服务合同范本版B版
- 二零二五年度房地产营销项目管理合同范本3篇
- 2024年一级支行行长竞聘演讲稿例文(4篇)
- 健身房销售人员培训
- 菌种保存管理
- 四年级数学(上)计算题专项练习及答案
- 广东省广州市2022-2023学年高二上学期期末考试化学试题
- 人教版-六年级上数学-扇形统计图单元测试(含答案)
- 2023年题工会基础知识试题及答案
- 光伏运营维护管理方案
- 6、水平四+田径18课时大单元计划-《双手头上前掷实心球》
- 江苏省徐州市2023-2024学年高一上学期1月期末抽测试题 物理 含解析
- 砍伐枯死桉树木申请书
评论
0/150
提交评论