版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Chapter 3Transport Layer运输层Our goals:understand principles behind transport layer services:multiplexing/demultiplexingreliable data transferflow controlcongestion controllearn about transport layer protocols in the Internet:UDP: connectionless transportTCP: connection-oriented transportTCP congestio
2、n control第 3 章 运输层 *3.1 运输层协议概述*3.2 TCP/IP 体系中的运输层3.2.1 运输层中的两个协议3.2.2 端口的概念*3.3 用户数据报协议 UDP 3.3.1 UDP 概述3.3.2 UDP 用户数据报的首部格式第 3 章 运输层(续)3.4 传输控制协议 TCP *3.4.1 TCP 概述*3.4.2 TCP 报文段的首部*3.4.3 TCP 的数据编号与确认*3.4.4 TCP 的流量控制与拥塞控制*3.4.5 TCP 的重传机制 3.4.6 采用随机早期丢弃 RED 进行拥塞控制*3.4.7 TCP 的运输连接管理 3.4.8 TCP 的有限状态机
3、3.1 运输层协议概述 从通信和信息处理的角度看,运输层向它上面的应用层提供通信服务,它属于面向通信部分的最高层,同时也是用户功能中的最低层。 物理层网络层运输层应用层数据链路层面向信息处理面向通信用户功能网络功能运输层为相互通信的应用进程提供了逻辑通信 54321运输层提供应用进程间的逻辑通信主机 A主机 B应用进程应用进程路由器 1路由器 2AP1LAN2WANAP2AP3AP4IP 层LAN1AP1AP2AP4端口端口54321IP 协议的作用范围运输层协议 TCP 和 UDP 的作用范围AP3应用进程之间的通信两个主机进行通信实际上就是两个主机中的应用进程互相通信。 应用进程之间的通信
4、又称为端到端的通信。 运输层的一个很重要的功能就是复用和分用。应用层不同进程的报文通过不同的端口向下交到运输层,再往下就共用网络层提供的服务。“运输层提供应用进程间的逻辑通信”。“逻辑通信”的意思是:运输层之间的通信好像是沿水平方向传送数据。但事实上这两个运输层之间并没有一条水平方向的物理连接。运输层协议和网络层协议的主要区别 应用进程应用进程IP 协议的作用范围(提供主机之间的逻辑通信)TCP 和 UDP 协议的作用范围(提供进程之间的逻辑通信)因 特 网运输层的主要功能 运输层为应用进程之间提供端到端的逻辑通信(但网络层是为主机之间提供逻辑通信)。运输层还要对收到的报文进行差错检测。运输层
5、需要有两种不同的运输协议,即面向连接的 TCP 和无连接的 UDP。 运输层与其上下层之间的关系的 OSI 表示法 运输实体运输实体运输协议运输层层接口 运输服务用户(应用层实体) 运输服务用户 (应用层实体)层接口 网络层(或网际层)应用层主机 A主机 B运输层服务访问点TSAP网络层服务访问点NSAP运输层向上提供可靠的和不可靠的逻辑通信信道 ?应用层运输层发送进程接收进程接收进程数据数据全双工可靠信道数据数据使用 TCP 协议使用 UDP 协议不可靠信道发送进程TCP/IP的运输层有两个不同的协议:(1) 用户数据报协议 UDP (User Datagram Protocol)(2) 传
6、输控制协议 TCP (Transmission Control Protocol)3.2 TCP/IP 体系中的运输层3.2.1 运输层中的两个协议两个对等运输实体在通信时传送的数据单位叫作运输协议数据单元 TPDU (Transport Protocol Data Unit)。TCP 传送的数据单位协议是 TCP 报文段(segment) UDP 传送的数据单位协议是 UDP 报文或用户数据报。 TCP 与 UDP TCP/IP 体系中的运输层协议 TCPUDPIP应用层与各种网络接口运输层TCP 与 UDP UDP 在传送数据之前不需要先建立连接。对方的运输层在收到 UDP 报文后,不需要
7、给出任何确认。虽然 UDP 不提供可靠交付,但在某些情况下 UDP 是一种最有效的工作方式。TCP 则提供面向连接的服务。TCP 不提供广播或多播服务。由于 TCP 要提供可靠的、面向连接的运输服务,因此不可避免地增加了许多的开销。这不仅使协议数据单元的首部增大很多,还要占用许多的处理机资源。 还要强调两点 运输层的 UDP 用户数据报与网际层的IP数据报有很大区别。IP 数据报要经过互连网中许多路由器的存储转发,但 UDP 用户数据报是在运输层的端到端抽象的逻辑信道中传送的。TCP 报文段是在运输层抽象的端到端逻辑信道中传送,这种信道是可靠的全双工信道。但这样的信道却不知道究竟经过了哪些路由
8、器,而这些路由器也根本不知道上面的运输层是否建立了 TCP 连接。 3.2.2 端口的概念端口就是运输层服务访问点 TSAP。端口的作用就是让应用层的各种应用进程都能将其数据通过端口向下交付给运输层,以及让运输层知道应当将其报文段中的数据向上通过端口交付给应用层相应的进程。从这个意义上讲,端口是用来标志应用层的进程。 端口在进程之间的通信中所起的作用 应用层运输层网络层TCP 报文段UDP用户数据报应用进程TCP 复用IP 复用UDP 复用TCP 报文段UDP用户数据报应用进程端口端口TCP 分用UDP 分用IP 分用IP 数据报IP 数据报发送方接收方端口 端口用一个 16 bit 端口号进
9、行标志。端口号只具有本地意义,即端口号只是为了标志本计算机应用层中的各进程。在因特网中不同计算机的相同端口号是没有联系的。两类端口 一类是熟知端口,其数值一般为 01023。当一种新的应用程序出现时,必须为它指派一个熟知端口。另一类则是一般端口,用来随时分配给请求通信的客户进程。 插口(socket) TCP 使用“连接”(而不仅仅是“端口”)作为最基本的抽象,同时将 TCP 连接的端点称为插口(socket),或套接字、套接口。插口和端口、IP 地址的关系是: IP 地址3 端口号1500 3, 1500插口(socket)同一个名词 socket有多种不同的意思 应用编程接口 API 称为
10、 socket API, 简称为 socket。socket API 中使用的一个函数名也叫作socket。调用 socket 函数的端点称为 socket。调用 socke t函数时其返回值称为 socket描述符,可简称为 socket。在操作系统内核中连网协议的 Berkeley 实现,称为 socket 实现。 3.3 用户数据报协议 UDP 3.3.1 UDP 概述 UDP 只在 IP 的数据报服务之上增加了很少一点的功能,即端口的功能和差错检测的功能。虽然 UDP 用户数据报只能提供不可靠的交付,但 UDP 在某些方面有其特殊的优点。发送数据之前不需要建立连接UDP 的主机不需要维
11、持复杂的连接状态表。UDP 用户数据报只有8个字节的首部开销。网络出现的拥塞不会使源主机的发送速率降低。这对某些实时应用是很重要的。 端口是用报文队列来实现 UDP 端口 51000UDP 端口 69出队列入队列出队列入队列TFTP 服务器TFTP 客户UDP 用户数据报应用层运输层3.3.2 UDP 用户数据报的首部格式 伪首部源端口目的端口长 度检验和数 据首 部UDP长度源 IP 地址目的 IP 地址017IP 数据报字节44112122222字节发送在前数 据首 部UDP 用户数据报伪首部源端口目的端口长 度检验和数 据首 部UDP长度源 IP 地址目的 IP 地址017IP 数据报字
12、节44112122222字节发送在前数 据首 部UDP 用户数据报用户数据报 UDP 有两个字段:数据字段和首部字段。首部字段有 8 个字节,由 4 个字段组成,每个字段都是两个字节。 伪首部源端口目的端口长 度检验和数 据首 部UDP长度源 IP 地址目的 IP 地址017IP 数据报字节44112122222字节发送在前数 据首 部UDP 用户数据报在计算检验和时,临时把“伪首部”和 UDP 用户数据报连接在一起。伪首部仅仅是为了计算检验和。计算 UDP 检验和的例子 10011001 00010011 153.1900001000 01101000 8.10410101011 00000
13、011 171.300001110 00001011 14.1100000000 00010001 0 和 1700000000 00001111 1500000100 00111111 108700000000 00001101 1300000000 00001111 1500000000 00000000 0(检验和)01010100 01000101 数据01010011 01010100 数据01001001 01001110 数据01000111 00000000 数据和 0(填充)10010110 11101101 求和得出的结果01101001 00010010 检验和 0411
14、2 字节伪首部8 字节UDP 首部7 字节数据填充按二进制反码运算求和将得出的结果求反码全 0 17 15 1087 13 15 全 0数据 数据 数据 数据数据 数据 数据 全 03.4 传输控制协议 TCP 3.4.1 TCP 概述 端口发送 TCP 报文段TCPTCP接收缓存发送缓存报文段报文段报文段端口发送端接收端向发送缓存写入数据块从接收缓存读取数据块应用进程应用进程TCP首部20 字节的固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FIN32 bitSYNRSTPSHACKURG比特 0 8 16 24 31填
15、 充TCP 数据部分TCP 首部TCP 报文段IP 数据部分IP 首部发送在前TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充源端口和目的端口字段各占 2 字节。端口是运输层与应用层的服务接口。运输层的复用和分用功能都要通过端口才能实现。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 3
16、1填 充序号字段占 4 字节。TCP 连接中传送的数据流中的每一个字节都编上一个序号。序号字段的值则指的是本报文段所发送的数据的第一个字节的序号。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充确认号字段占 4 字节,是期望收到对方的下一个报文段的数据的第一个字节的序号。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHAC
17、KURG比特 0 8 16 24 31填 充数据偏移占 4 bit,它指出 TCP 报文段的数据起始处距离 TCP 报文段的起始处有多远。“数据偏移”的单位不是字节而是 32 bit 字(4 字节为计算单位)。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充保留字段占 6 bit,保留为今后使用,但目前应置为 0。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口
18、确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充紧急比特 URG 当 URG 1 时,表明紧急指针字段有效。它告诉系统此报文段中有紧急数据,应尽快传送(相当于高优先级的数据)。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充确认比特 ACK 只有当 ACK 1 时确认号字段才有效。当 ACK 0 时,确认号无效。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变
19、)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充推送比特 PSH (PuSH) 接收 TCP 收到推送比特置 1 的报文段,就尽快地交付给接收应用进程,而不再等到整个缓存都填满了后再向上交付。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充复位比特 RST (ReSeT) 当 RST 1 时,表明 TCP 连接中出现严重差错(如由于主机崩溃或其他原因),必须
20、释放连接,然后再重新建立运输连接。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充同步比特 SYN 同步比特 SYN 置为 1,就表示这是一个连接请求或连接接受报文。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充终止比特 FIN (FINal) 用来释放一个连接。当FIN
21、1 时,表明此报文段的发送端的数据已发送完毕,并要求释放运输连接。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充窗口字段 占 2 字节。窗口字段用来控制对方发送的数据量,单位为字节。TCP 连接的一端根据设置的缓存空间大小确定自己的接收窗口大小,然后通知对方以确定对方的发送窗口的上限。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNR
22、STPSHACKURG比特 0 8 16 24 31填 充检验和 占 2 字节。检验和字段检验的范围包括首部和数据这两部分。在计算检验和时,要在 TCP 报文段的前面加上 12 字节的伪首部。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充紧急指针字段 占 16 bit。紧急指针指出:在本报文段中紧急数据共有多少个字节(紧急数据放在本报文段数据的最前面)。 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可
23、变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充选项字段 长度可变。TCP 只规定了一种选项,即最大报文段长度 MSS (Maximum Segment Size)。MSS 告诉对方 TCP:“我的缓存所能接收的报文段的数据字段的最大长度是 MSS 个字节。” MSS 是 TCP 报文段中的数据字段的最大长度。数据字段加上 TCP 首部才等于整个的 TCP 报文段。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项 (长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRS
24、TPSHACKURG比特 0 8 16 24 31填 充填充字段 这是为了使整个首部长度是 4 字节的整数倍。 3.4.3 TCP 的数据编号与确认 TCP 协议是面向字节的。TCP 将所要传送的报文看成是字节组成的数据流,并使每一个字节对应于一个序号。在连接建立时,双方要商定初始序号。TCP 每次发送的报文段的首部中的序号字段数值表示该报文段中的数据部分的第一个字节的序号。 TCP 的确认是对接收到的数据的最高序号表示确认。接收端返回的确认号是已收到的数据的最高序号加 1。因此确认号表示接收端期望下次收到的数据中的第一个数据字节的序号。 3.4.4 TCP 的流量控制与拥塞控制1. 滑动窗口
25、的概念TCP 采用大小可变的滑动窗口进行流量控制。窗口大小的单位是字节。在 TCP 报文段首部的窗口字段写入的数值就是当前给对方设置的发送窗口数值的上限。发送窗口在连接建立时由双方商定。但在通信的过程中,接收端可根据自己的资源情况,随时动态地调整对方的发送窗口上限值(可增大或减小)。 收到确认即可前移1002003004005006007008009001012013014015016017018011发送窗口可发送不可发送指针发送端要发送 900 字节长的数据,划分为 9 个 100 字节长的报文段,而发送窗口确定为 500 字节。发送端只要收到了对方的确认,发送窗口就可前移。发送 TCP
26、要维护一个指针。每发送一个报文段,指针就向前移动一个报文段的距离。收到确认即可前移1002003004005006007008009001012013014015016017018011可发送不可发送指针1002003004005006007008009001012013014015016017018011发送窗口可发送不可发送指针发送窗口前移发送端已发送了 400 字节的数据,但只收到对前 200 字节数据的确认,同时窗口大小不变。现在发送端还可发送 300 字节。 已发送并被确认已发送但未被确认100200300400500600700800900101201301401501601701
27、8011已发送并被确认已发送但未被确认可发送不可发送指针1002003004005006007008009001012013014015016017018011已发送并被确认可发送不可发送指针发送窗口前移发送窗口缩小发送端收到了对方对前 400 字节数据的确认,但对方通知发送端必须把窗口减小到 400 字节。现在发送端最多还可发送 400 字节的数据。 利用可变窗口大小进行流量控制双方确定的窗口值是 400 SEQ = 1SEQ = 201SEQ = 401SEQ = 301SEQ = 101SEQ = 501ACK = 201, WIN = 300ACK = 601, WIN = 0ACK
28、= 501, WIN = 200主机 A主机 B允许 A 再发送 300 字节(序号 201 至 500)A 还能发送 200 字节A 还能发送 200 字节(序号 301 至 500)A 还能发送 300 字节A 还能发送 100 字节(序号 401 至 500)A 超时重发,但不能发送序号 500 以后的数据允许 A 再发送 200 字节(序号 501 至 700)A 还能发送 100 字节(序号 501 至 700)不允许 A 再发送(到序号 600 的数据都已收到)SEQ = 201丢失!2. 慢开始和拥塞避免发送端的主机在确定发送报文段的速率时,既要根据接收端的接收能力,又要从全局考
29、虑不要使网络发生拥塞。因此,每一个 TCP 连接需要有以下两个状态变量:接收端窗口 rwnd (receiver window) 又称为通知窗口(advertised window)。拥塞窗口 cwnd (congestion window)。接收端窗口 rwnd 和拥塞窗口 cwnd (1) 接收端窗口 rwnd 这是接收端根据其目前的接收缓存大小所许诺的最新的窗口值,是来自接收端的流量控制。接收端将此窗口值放在 TCP 报文的首部中的窗口字段,传送给发送端。(2) 拥塞窗口 cwnd (congestion window) 是发送端根据自己估计的网络拥塞程度而设置的窗口值,是来自发送端的流
30、量控制。发送窗口的上限值发送端的发送窗口的上限值应当取为接收端窗口 rwnd 和拥塞窗口 cwnd 这两个变量中较小的一个,即应按以下公式确定:发送窗口的上限值 Min rwnd, cwnd (3-1)当 rwnd cwnd 时,是接收端的接收能力限制发送窗口的最大值。当 cwnd 3),则将 cwnd 设置为 ssthresh + n MSS。(4) 若发送窗口值还容许发送报文段,就按拥塞避免算法继续发送报文段。(5) 若收到了确认新的报文段的 ACK,就将 cwnd 缩小到 ssthresh。3.4.5 TCP 的重传机制重传机制是 TCP 中最重要和最复杂的问题之一。TCP 每发送一个报
31、文段,就对这个报文段设置一次计时器。只要计时器设置的重传时间到但还没有收到确认,就要重传这一报文段。往返时延的方差很大由于 TCP 的下层是一个互连网环境,IP 数据报所选择的路由变化很大。因而运输层的往返时延的方差也很大。时间数据链路层运输层T1T2T3往返时延的概率分布 往返时延的自适应算法 记录每一个报文段发出的时间,以及收到相应的确认报文段的时间。这两个时间之差就是报文段的往返时延。 将各个报文段的往返时延样本加权平均,就得出报文段的平均往返时延 RTT。每测量到一个新的往返时延样本,就按下式重新计算一次平均往返时延 RTT: 平均往返时延RTT (旧的RTT) (1 ) (新的往返时
32、延样本) (3-2)在上式中,0 1。 参数 的选择若 很接近于 1,表示新算出的平均往返时延 RTT 和原来的值相比变化不大,而新的往返时延样本的影响不大(RTT 值更新较慢)。若选择 接近于零,则表示加权计算的平均往返时延 RTT 受新的往返时延样本的影响较大(RTT 值更新较快)。典型的 值为 7/8。 超时重传时间 RTO (RetransmissionTime-Out) 计时器的 RTO 应略大于上面得出的 RTT,即: RTO RTT (3-3)这里 是个大于 1 的系数。若取 很接近于1 ,发送端可及时地重传丢失的报文段,因此效率得到提高。但若报文段并未丢失而仅仅是增加了一点时延
33、,那么过早地重传反而会加重网络的负担。因此 TCP 原先的标准推荐将 值取为 2。 往返时延 RTT?往返时间的测量相当复杂 TCP 报文段 1 没有收到确认。重传(即报文段 2)后,收到了确认报文段 ACK。如何判定此确认报文段是对原来的报文段 1 的确认,还是对重传的报文段 2 的确认? 发送一个TCP 报文段超时重传TCP 报文段收到 ACK时间12往返时延 RTT?是对哪一个报文段的确认?Karn 算法 在计算平均往返时延 RTT 时,只要报文段重传了,就不采用其往返时延样本。这样得出的平均往返时延 RTT 和重传时间就较准确。 修正的 Karn 算法 报文段每重传一次,就将重传时间增
34、大一些:新的重传时间 (旧的重传时间) (3-4)系数 的典型值是2 。当不再发生报文段的重传时,才根据报文段的往返时延更新平均往返时延 RTT 和重传时间的数值。实践证明,这种策略较为合理。 3.4.6 随机早期丢弃 RED(Random Early Discard) 使路由器的队列维持两个参数,即队列长度最小门限 THmin 和最大门限 THmax。RED 对每一个到达的数据报都先计算平均队列长度 LAV。若平均队列长度小于最小门限 THmin,则将新到达的数据报放入队列进行排队。若平均队列长度超过最大门限 THmax,则将新到达的数据报丢弃。若平均队列长度在最小门限 THmin 和最大门
35、限THmax 之间,则按照某一概率 p 将新到达的数据报丢弃。RED 将路由器的到达队列划分成为三个区域 从队首发送最小门限 THmin最大门限 THmin数据报到达平均队列长度 Lav排队丢弃以概率 p 丢弃丢弃概率 p 与 THmin 和 Thmax 的关系 最小门限 THmin最大门限 THmax平均队列长度 Lav数据报丢弃概率 p1.00pmax当 LAV Thmin 时,丢弃概率 p = 0。当 LAV Thmax 时,丢弃概率 p = 1。当 THmin LAV THmax时, 0 p 1 。 例如,按线性规律变化,从 0 变到 pmax。瞬时队列长度和平均队列长度的区别 队列长
36、度时间瞬时队列长度平均队列长度3.4.7 TCP 的运输连接管理1. 运输连接的三个阶段 运输连接就有三个阶段,即:连接建立、数据传送和连接释放。运输连接的管理就是使运输连接的建立和释放都能正常地进行。连接建立过程中要解决以下三个问题:要使每一方能够确知对方的存在。要允许双方协商一些参数(如最大报文段长度,最大窗口大小,服务质量等)。能够对运输实体资源(如缓存大小,连接表中的项目等)进行分配。 客户服务器方式 TCP 连接的建立都是采用客户服务器方式。主动发起连接建立的应用进程叫做客户(client)。被动等待连接建立的应用进程叫做服务器(server)。 用三次握手建立 TCP 连接 SYN, SEQ = x主机 BSYN, ACK, SEQ = y, ACK= x 1ACK, SEQ = x + 1, ACK = y 1被动打开主动打开确认确认主机 A连接请求建立 TCP 连接A 的 TCP 向 B 发出连接请求报文段,其首部中的同步比特 SYN 应置为 1,并选择序号 x,表明传送数据时的第一个数据字节的序号是 x。B 的 TCP 收到连接请求报文段后,如同意,则发回确认。B 在确认报文段中应将 SYN 置为 1,其确认号应为 x 1,同时也为自己选择序号 y。A 收到此报文段后,向 B 给出确认
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论