2022届上海市嘉定区高三第四次模拟考试数学试卷含解析_第1页
2022届上海市嘉定区高三第四次模拟考试数学试卷含解析_第2页
2022届上海市嘉定区高三第四次模拟考试数学试卷含解析_第3页
2022届上海市嘉定区高三第四次模拟考试数学试卷含解析_第4页
2022届上海市嘉定区高三第四次模拟考试数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,且,则( )A3B3或7C5D5或82若复数满足,则( )ABC2D3已知函数,若不等式对任意的恒成立,则实数k的取值范围是( )ABCD4已知向量,则向量在向量

2、上的投影是( )ABCD5己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是( )ABCD6若复数z满足,则( )ABCD7定义在上的奇函数满足,若,则( )AB0C1D28设为非零实数,且,则( )ABCD9要得到函数的图象,只需将函数的图象上所有点的( )A横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度B横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度C横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度D横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度10在四面体中,为正三角形,边长为6,则四面体的体积为( )ABC24D11甲、乙、丙、丁四位

3、同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )A8B7C6D512设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数_14设,满足条件,则的最大值为_.15若双曲线C:(,)的顶点到渐近线的距离为,则的最小值_.16已知双曲线的渐近线与准线的一个交点坐标为,则双曲线的焦距为_.三、解答题:共70分。解答应写出文字说明、证明过程或

4、演算步骤。17(12分)已知椭圆的焦点在轴上,且顺次连接四个顶点恰好构成了一个边长为且面积为的菱形(1)求椭圆的方程;(2)设,过椭圆右焦点的直线交于、两点,若对满足条件的任意直线,不等式恒成立,求的最小值.18(12分)已知函数.(1)讨论的零点个数;(2)证明:当时,.19(12分)如图,在四棱锥中,底面为等腰梯形,为等腰直角三角形,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.20(12分)已知函数.()若是第二象限角,且,求的值;()求函数的定义域和值域.21(12分)如图,在三棱柱中,是边长为2的等边三角形,.(1)证明:平面平面;(2),分别是

5、,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.22(10分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:点的极角;面积的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所

6、以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题2D【解析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.3A【解析】先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【详解】当时,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【点睛】本题考查了利用数形结合思想解决不

7、等式恒成立问题,考查了导数的应用,属于中档题.4A【解析】先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解【详解】由于向量,故向量在向量上的投影是.故选:A【点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.5B【解析】考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又, 当时,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的

8、零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当时,有两个不同的零点.故选:B.【点睛】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.6D【解析】先化简得再求得解.【详解】所以.故选:D【点睛】本题主要考查复数的运算和模的计算,意在考查学生对这些知识的理解掌握水平.7C【解析】首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,所以,.所以,又,所以.故选:C【点

9、睛】本小题主要考查函数的奇偶性和周期性,属于基础题.8C【解析】取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,故正确;取,计算知错误;故选:.【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.9C【解析】根据三角函数图像的变换与参数之间的关系,即可容易求得.【详解】为得到,将横坐标伸长到原来的2倍(纵坐标不变),故可得;再将 向左平移个单位长度,故可得.故选:C.【点睛】本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.10A【解析】推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【详解】解: 在四面体中,为等边三角形

10、,边长为6,分别取的中点,连结,则,且,平面,平面,四面体的体积为:.故答案为:.【点睛】本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.11B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙); A(甲,丁)B(丙)C(乙); A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B. 12D【解析】利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【详解】取的中点,则由得,即;在中,为的中位线,所以

11、,所以;由双曲线定义知,且,所以,解得,故选:D【点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.二、填空题:本题共4小题,每小题5分,共20分。13【解析】先令可得其展开式各项系数的和,又由题意得,解得,进而可得其展开式的通项,即可得答案.【详解】令,则有,解得,则二项式的展开式的通项为,令,则其展开式中的第4项的系数为,故答案为:【点睛】此题考查二项式定理的应用,解题时需要区分展开式中各项系数的和与各二项式系数和,属于基础题.14【解析】作出可行域,由得,平移直线,数形结合可求的最大值.【详解】作出可行域如图所示由得,则是直线在轴上的截距.平移直线,当直线经过可行域内的点时,最小,

12、此时最大.解方程组,得,.故答案为:.【点睛】本题考查简单的线性规划,属于基础题.15【解析】根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解.【详解】由双曲线C:(,可得一条渐近线,一个顶点,所以,解得,则,当且仅当时,取等号,所以的最小值为.故答案为:【点睛】本题考查了双曲线的几何性质、点到直线的距离公式、基本不等式求最值,注意验证等号成立的条件,属于基础题.161【解析】由双曲线的渐近线,以及求得的值即可得答案【详解】由于双曲线的渐近线与准线的一个交点坐标为,所以,即,把代入,得,即又联立,得所以故答案是:1【点睛】本题考查双曲线的性质,

13、注意题目“双曲线的渐近线与准线的一个交点坐标为”这一条件的运用,另外注意题目中要求的焦距即,容易只计算到,就得到结论三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1) (2)【解析】(1)由已知条件列出关于和的方程,并计算出和的值,jike 得到椭圆的方程.(2)设出点和点坐标,运用点坐标计算出,分类讨论直线的斜率存在和不存在两种情况,求解出的最小值.【详解】(1)由己知得:,解得,所以,椭圆的方程(2)设,当直线垂直于轴时,且此时, 当直线不垂直于轴时,设直线由,得,.要使恒成立,只需,即最小值为【点睛】本题考查了求解椭圆方程以及直线与椭圆的位置关系,求解过程中需要分类

14、讨论直线的斜率存在和不存在两种情况,并运用根与系数的关系转化为只含一个变量的表达式进行求解,需要掌握解题方法,并且有一定的计算量.18(1)见解析(2)见解析【解析】(1)求出,分别以当,时,结合函数的单调性和最值判断零点的个数.(2)令,结合导数求出;同理可求出满足,从而可得,进而证明.【详解】解析:(1),当时,单调递减,此时有1个零点;当时,无零点;当时,由得,由得,在单调递减,在单调递增,在处取得最小值,若,则,此时没有零点;若,则,此时有1个零点;若,则,求导易得,此时在,上各有1个零点.综上可得时,没有零点,或时,有1个零点,时,有2个零点.(2)令,则,当时,;当时,.令,则,当

15、时,当时,即.【点睛】本题考查了导数判断函数零点问题,考查了运用导数证明不等式问题,考查了分类的数学思想.本题的难点在于第二问不等式的证明中,合理设出函数,通过比较最值证明.19(1)证明见解析;(2)【解析】(1)取的中点,连接,易得,进而可证明四边形为平行四边形,即,从而可证明平面;(2)取中点,中点,连接,易证平面,平面,从而可知两两垂直,以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系,进而求出平面的法向量,及平面的法向量为,由,可求得平面与平面所成的二面角的正弦值.【详解】(1)证明:如图1,取的中点,连接.,且,四边形为平行四边形,.又平面,平面,平面.(2)如图

16、2,取中点,中点,连接.,平面平面,平面平面,平面,平面,两两垂直.以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系.由,可得,在等腰梯形中,易知,.则,设平面的法向量为,则,取,得.设平面的法向量为,则,取,得.因为,所以,所以平面与平面所成的二面角的正弦值为.【点睛】本题考查线面平行的证明,考查二面角的求法,利用空间向量法是解决本题的较好方法,属于中档题.20()()函数的定义域为,值域为【解析】(1)由为第二象限角及的值,利用同角三角函数间的基本关系求出及的值,再代入中即可得到结果.(2)函数解析式利用二倍角和辅助角公式将化为一个角的正弦函数,根据的范围,即可得到函数值

17、域.【详解】解:(1)因为是第二象限角,且,所以.所以,所以.(2)函数的定义域为.化简,得,因为,且,所以,所以.所以函数的值域为.(注:或许有人会认为“因为,所以”,其实不然,因为.)【点睛】本题考查同角三角函数的基本关系式,三角函数函数值求解以及定义域和值域的求解问题,涉及到利用二倍角公式和辅助角公式整理三角函数关系式的问题,意在考查学生的转化能力和计算求解能力,属于常考题型.21(1)证明见解析;(2)为线段上靠近点的四等分点,且坐标为【解析】(1)先通过线面垂直的判定定理证明平面,再根据面面垂直的判定定理即可证明;(2)分析位置关系并建立空间直角坐标系,根据二面角的余弦值与平面法向量

18、夹角的余弦值之间的关系,即可计算出的坐标从而位置可确定.【详解】(1)证明:因为,所以,即.又因为,所以,所以平面.因为平面,所以平面平面.(2)解:连接,因为,是的中点,所以.由(1)知,平面平面,所以平面.以为原点建立如图所示的空间直角坐标系,则平面的一个法向量是,.设,代入上式得,所以.设平面的一个法向量为,由,得.令,得.因为二面角的平面角的大小为,所以,即,解得.所以点为线段上靠近点的四等分点,且坐标为.【点睛】本题考查面面垂直的证明以及利用向量法求解二面角有关的问题,难度一般.(1)证明面面垂直,可通过先证明线面垂直,再证明面面垂直;(2)二面角的余弦值不一定等于平面法向量夹角的余弦值,要注意结合图形分析.22(1)曲线为圆心在原点,半径为2的圆.的极坐标方程为(2)【解析】(1)求得曲线伸缩变换后所得的参数方程,消参后求得的普通方程,判断出对应的曲线,并将的普通方程转化为极坐标方程.(2)将的极角代入直线的极坐标方程,由此求得点的极径

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论