![2022届山东省济南市师范大学高考数学二模试卷含解析_第1页](http://file4.renrendoc.com/view/29fb0b06c895e61288cd64f247516620/29fb0b06c895e61288cd64f2475166201.gif)
![2022届山东省济南市师范大学高考数学二模试卷含解析_第2页](http://file4.renrendoc.com/view/29fb0b06c895e61288cd64f247516620/29fb0b06c895e61288cd64f2475166202.gif)
![2022届山东省济南市师范大学高考数学二模试卷含解析_第3页](http://file4.renrendoc.com/view/29fb0b06c895e61288cd64f247516620/29fb0b06c895e61288cd64f2475166203.gif)
![2022届山东省济南市师范大学高考数学二模试卷含解析_第4页](http://file4.renrendoc.com/view/29fb0b06c895e61288cd64f247516620/29fb0b06c895e61288cd64f2475166204.gif)
![2022届山东省济南市师范大学高考数学二模试卷含解析_第5页](http://file4.renrendoc.com/view/29fb0b06c895e61288cd64f247516620/29fb0b06c895e61288cd64f2475166205.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是函数的极大值点,则的取值范围是ABCD2已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为( )ABCD3函数与的图象上存在关于直线对称的点,则的取值范围是( )ABCD4已知函数,且在上是单调函数,则下列说法正确
2、的是( )ABC函数在上单调递减D函数的图像关于点对称5设集合Ay|y2x1,xR,Bx|2x3,xZ,则AB( )A(1,3B1,3C0,1,2,3D1,0,1,2,36已知复数,满足,则( )A1BCD57若函数f(x)x3x2在区间(a,a5)上存在最小值,则实数a的取值范围是A5,0)B(5,0)C3,0)D(3,0)8已知函数,若存在实数,使成立,则正数的取值范围为()ABCD9某三棱锥的三视图如图所示,则该三棱锥的体积为ABC2D10函数的大致图象是ABCD11已知向量,若,则( )ABCD12已知数列为等比数列,若,且,则( )AB或CD二、填空题:本题共4小题,每小题5分,共2
3、0分。13已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_14在数列中,已知,则数列的的前项和为_.15设函数,其中若存在唯一的整数使得,则实数的取值范围是_16已知双曲线-=1(a0,b0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线上一点到焦点的距离为2,(1)求的值与抛物线的方程;(2)抛物线上第一象限内的动点在点右侧,抛物线上第四象限内的动点,满足,求直线的斜率范围.18(12分)已知,且满足,证明:.19(12分)
4、设函数(其中),且函数在处的切线与直线平行.(1)求的值;(2)若函数,求证:恒成立.20(12分)设函数(1)当时,求不等式的解集;(2)若对任意都有,求实数的取值范围21(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精
5、确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.可能用到的参考数据:取,.22(10分)设,函数,其中为自然对数的底数.(1)设函数.若,试判断函数与的图像在区间上是否有交点;求证:对任意的,直线都不是的切线;(2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】方法一:令,则,当,时,单调递减,时,且,即在上单调递增,时,
6、且,即在上单调递减,是函数的极大值点,满足题意;当时,存在使得,即,又在上单调递减,时,所以,这与是函数的极大值点矛盾综上,故选B方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,即;在的右侧附近,即易知,时,与相切于原点,所以根据与的图象关系,可得,故选B2C【解析】对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【详解】当时,显然当时有,经单调性分析知为的第一个极值点又时,均为其极值点函数不能在端点处取得极值,对应极值,故选:C【点
7、睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题3C【解析】由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题4B【解析】根据函数,在上是单调函数,确定 ,然后一一验证,A
8、.若,则,由,得,但.B.由,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【详解】因为函数,在上是单调函数,所以 ,即,所以 ,若,则,又因为,即,解得, 而,故A错误.由,不妨令 ,得由,得 或当时,不合题意.当时,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.5C【解析】先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可【详解】解:集合Ay|y2x1,xRy|y1,Bx|2x3,xZ2,1,0,1,2,3,AB0,1,2,3,故选:C【
9、点睛】本题主要考查集合的交集运算,属于基础题6A【解析】首先根据复数代数形式的除法运算求出,求出的模即可【详解】解:,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题7C【解析】求函数导数,分析函数单调性得到函数的简图,得到a满足的不等式组,从而得解.【详解】由题意,f(x)x22xx(x2),故f(x)在(,2),(0,)上是增函数,在(2,0)上是减函数,作出其图象如图所示令x3x2,得x0或x3,则结合图象可知,解得a3,0),故选C.【点睛】本题主要考查了利用函数导数研究函数的单调性,进而研究函数的最值,属于常考题型.8A【解析】根据实数满足的等量关系,代入后将方
10、程变形,构造函数,并由导函数求得的最大值;由基本不等式可求得的最小值,结合存在性问题的求法,即可求得正数的取值范围.【详解】函数,由题意得,即,令,在上单调递增,在上单调递减,而,当且仅当,即当时,等号成立,.故选:A.【点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.9A【解析】 由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为和,所以底面面积为 高为的三棱锥,所以三棱锥的体积为,故选A10A【解析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,可排除D选项;当时
11、,当时,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题11A【解析】根据向量坐标运算求得,由平行关系构造方程可求得结果.【详解】, ,解得:故选:【点睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则.12A【解析】根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线
12、的斜率为1,即,即可求出双曲线的离心率【详解】解:双曲线的左右焦点分别关于两条渐近线的对称点重合,一条渐近线的斜率为1,即,故答案为:【点睛】本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题14【解析】由已知数列递推式可得数列的所有奇数项与偶数项分别构成以2为公比的等比数列,求其通项公式,得到,再由求解【详解】解:由,得,则数列的所有奇数项与偶数项分别构成以2为公比的等比数列,故答案为:【点睛】本题考查数列递推式,考查等差数列与等比数列的通项公式,训练了数列的分组求和,属于中档题15【解析】根据分段函数的解析式画出图像,再根据存在唯一的整数使得数形结合列出
13、临界条件满足的关系式求解即可.【详解】解:函数,且画出的图象如下:因为,且存在唯一的整数使得,故与在时无交点,得;又,过定点又由图像可知,若存在唯一的整数使得时,所以,存在唯一的整数使得所以.根据图像可知,当时, 恒成立.综上所述, 存在唯一的整数使得,此时故答案为:【点睛】本题主要考查了数形结合分析参数范围的问题,需要根据题意分别分析定点右边的整数点中为满足条件的唯一整数,再数形结合列出时的不等式求的范围.属于难题.16【解析】设点为,由抛物线定义知,求出点P坐标代入双曲线方程得到的关系式,求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【详解】由题意得F(2,0),因为点P在抛物线
14、y2=8x上,|FP|=5,设点为,由抛物线定义知,解得,不妨取P(3,2),代入双曲线-=1,得-=1,又因为a2+b2=4,解得a=1,b=,因为双曲线的渐近线方程为,所以双曲线的渐近线为y=x,由点到直线的距离公式可得,点F到双曲线的渐近线的距离.故答案为:【点睛】本题考查双曲线和抛物线方程及其几何性质;考查运算求解能力和知识迁移能力;灵活运用双曲线和抛物线的性质是求解本题的关键;属于中档题、常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)1;(2)【解析】(1)根据点到焦点的距离为2,利用抛物线的定义得,再根据点在抛物线上有,列方程组求解,(2)设,根
15、据,再由,求得,当,即时,直线斜率不存在;当时,令,利用导数求解,【详解】(1)因为点到焦点的距离为2,即点到准线的距离为2,得,又,解得,所以抛物线方程为(2)设,由由,则当,即时,直线斜率不存在;当时,令,所以在上分别递减则【点睛】本题主要考查抛物线定义及方程的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题,18证明见解析【解析】将化简可得,由柯西不等式可得证明.【详解】解:因为,所以,又, 所以,当且仅当时取等号.【点睛】本题主要考查柯西不等式的应用,相对不难,注意已知条件的化简及柯西不等式的灵活运用.19(1)(2)证明见解析【解析】(1)求导得到,解得答案.(2)变形得到,
16、令函数,求导得到函数单调区间得到,得到证明.【详解】(1),解得.(2)得,变形得,令函数,令解得,当时,时.函数在上单调递增,在上单调递减,而函数在区间上单调递增,即,即,恒成立.【点睛】本题考查了根据切线求参数,证明不等式,意在考查学生的计算能力和转化能力,综合应用能力.20(1)(2)【解析】利用零点分区间法,去掉绝对值符号分组讨论求并集,对恒成立,则,由三角不等式,得求解【详解】解:当时,不等式即为,可得或或,解得或或,则原不等式的解集为 若对任意、都有,即为, 由,当取得等号,则,由,可得,则的取值范围是【点睛】本题考查含有两个绝对值符号的不等式解法及利用三角不等式解恒成立问题. (
17、1)含有两个绝对值符号的不等式常用解法可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解(2)利用三角不等式把不等式恒成立问题转化为函数最值问题.21 (1)60%;(2) (i)0.12 (ii) 【解析】(1)利用上线人数除以总人数求解;(2)(i)利用二项分布求解;(ii)甲、乙两市上线人数分别记为X,Y,得,.,利用期望公式列不等式求解【详解】(1)估计本科上线率为.(2)(i)记“恰有8名学生达到本科线”为事件A,由图可知,甲市每个考生本科上线的概率为0.6,则. (ii)甲、乙两市2020届高考本科上线人数分别记为X,Y,依题意,可得,. 因为20
18、20届高考本科上线人数乙市的均值不低于甲市,所以,即, 解得,又,故p的取值范围为.【点睛】本题考查二项分布的综合应用,考查计算求解能力,注意二项分布与超几何分布是易混淆的知识点.22(1)函数与的图象在区间上有交点;证明见解析;(2)且;【解析】(1)令,结合函数零点的判定定理判断即可;设切点横坐标为,求出切线方程,得到,根据函数的单调性判断即可;(2)求出的解析式,通过讨论的范围,求出函数的单调区间,确定的范围即可【详解】解:(1)当时,函数,令,则,故,又函数在区间上的图象是不间断曲线,故函数在区间上有零点,故函数与的图象在区间上有交点;证明:假设存在,使得直线是曲线的切线,切点横坐标为,且,则切线在点切线方程为,即,从而,且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代农业装备在种植业中的技术优势
- 现代医疗技术中的人才培养与团队建设
- 校园文化与企业文化的对接与互鉴
- 14《母鸡》说课稿-2023-2024学年统编版四年级语文下册
- 24 《古人谈读书》说课稿-2024-2025学年语文五年级上册统编版
- 6 传统游戏我会玩2023-2024学年二年级下册道德与法治同步说课稿(统编版)
- 14 圆明园的毁灭 说课稿-2024-2025学年语文五年级上册统编版
- 5 树和喜鹊(说课稿)-2023-2024学年统编版语文一年级下册
- 17《爬天都峰》说课稿-2024-2025学年统编版语文四年级上册
- 2023三年级英语下册 Unit 4 Food and Restaurants Lesson 21 In the Restaurant说课稿 冀教版(三起)
- 中国储备粮管理集团有限公司兰州分公司招聘笔试真题2024
- 2024年广东省公务员录用考试《行测》真题及答案解析
- 骨科手术纠纷案例分析课件
- 2022年广西高考英语真题及答案(全国甲卷)
- 安全生产责任清单(加油站)
- 动物检疫技术-动物检疫的程序(动物防疫与检疫技术)
- 煤矿复工复产专项安全风险辨识
- DB42T 1049-2015房产测绘技术规程
- 《民航服务沟通技巧》教案第8课重要旅客服务沟通
- 学校副校长述职报告PPT模板下载
- (完整版)欧姆龙E3X-HD光纤放大器调试SOP
评论
0/150
提交评论