综合系统评价的方法研究报告_第1页
综合系统评价的方法研究报告_第2页
综合系统评价的方法研究报告_第3页
综合系统评价的方法研究报告_第4页
综合系统评价的方法研究报告_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-. z.系统综合评价的方法摘要在我国社会主义现代化建立的今天,无论是在国家的宏观调控,还是在企事业单位的管理中,人们都要面对种种复杂多变的社会问题和经济现象。它们的分析和比拟不仅需要科学的定性分析,更迫切需要定量分析方法的支撑。这个时候,应用数学的价值就突显了出来。在我们研究的评价科学的广泛应用领域里,存在大量的现象和行为可以用数学方法来表达和解决。众所周知,正确的决策来源于科学的评价,评价是决策的关键。综合评价通常指对被评价对象所进展的客观、公正、合理的全面评价,如果把被评价对象视为系统的话,可抽象地表述为:在假设干个(同类)系统中,如何确认哪个系统的运行(或开展)状况好与差。属性综合评价

2、的理论、方法在管理科学与工程领域中占有重要的地位,已成为经济管理、工业工程及决策等领域中不可缺少的重要内容,且有着重大的实用价值和广泛的应用前景,特别是针对那些诸如候选人排队、重大工程方案的选优、企业经营决策等问题来说,综合评价问题显得尤为重要。随着人们对社会现象、经济规律认识的不断深入,多目标决策问题呈现出的指标集增多、数据量急增、评价方法多样化的趋势。在这个过程中,繁琐的数据处理和复杂的建模分析在没有计算机辅助的情况下是不可想的。从而,对评价问题建立有力的支持成为很多领域的需求。计算机的应用对系统分析的作用无疑是巨大的。在当今,人性化的计算机操作系统和新的可视化计算机语言给用非计算机专业的

3、编程人员和用户带来了方便。在评价决策中,运用定性与定量相结合,集成多种计算分析的模型,面向广泛的应用领域,开发通用的评价决策支持系统软件不仅是决策科学的需求,也是信息开展的需求。这必将促使科学的评价与决策方法在管理、经济、工程工程等多方面的应用领域中广泛开展、不断深入。关键词:综合评价,灰色关联综合评价的概念综合评价(prehensive Evaluation)是对被评价对象所进展的客观、公正、合理的评价。是指人们根据不同的评价目的,选择相应的评价形式,据此选择多个方面的因素或指标,并通过一定的评价方法,将多个评价因素或指标转化为能反映评价对象总体特征的信息。综合评价的对象系统常常是社会、经济

4、、科技、教育、环境和管理等一些复杂系统(ple* System)。综合评价的结果,是对被评价事物一般水平或趋势的抽象程度较高的数量描述,这种描述具有整体性和全面性,具有实际社会经济含义。一般地,一个综合评价问题由5个要素组成:评价对象、评价指标、权重系数、集结模型及评价者。综合评价的研究现状与开展趋势1)探索新的综合评价方法虽然目前已有一些综合评价方法较好地考虑和集成了综合评价过程中的各种定性与定量信息,但是这些综合评价方法在应用中仍摆脱不了综合评价过程中的随机性和评价专家主观上的不确定性及认识上的模糊性。即使是同一评价专家,在不同的时间和环境对同一评价对象也往往会得出不一致的主观判断。综合评

5、价中,有时既要能充分考虑评价专家的经历和直觉思维的模式,又要能降低综合评价过程中人为的不确定性因素,既具综合评价方法的规*性又能表达出较高的问题求解效率。2)综合运多种评价方法综合评价是个十分复杂的问题,它涉及评价对象集、评价目标(指标)集、评价方法集、评价人集,综合评价结果由以上诸因素特定组合所决定。传统的评价方法对以上组合的选择缺乏理性标准影响评价结论的客观性。采用综合集成的思想,将两种或两种以上的方法加以改造并结合,获得一些新的评价方法。相关的研究成果归结起来有四类:(1)一般的综合评价方法与模糊综合评价方法合成结合方法模糊化和灰色化,西蒙提出管理从最优化到满意度的转变。现代管理科学趋向

6、于软化。评价对象由于运行机制不清楚行为信息不完全决策目标具有模糊性且难以量化,于是在原有的综合评价方法中引进了可能度和满意度的概念。模糊数学的隶属度和灰色系统理论中的灰度正好是实现柔化的有效工具,基于此而产生的些初步集化的方法。(2)一般评价方法与人工智能方法的集成这种集成就是评价方法智能化。随着计算机技术的迅猛开展,管理科学中不断采用新技术使得决策更加科学化、*化、智能化。目前主要有以下几种综合评价方法:模糊人工神经网络评价方法,群决策支持系统(GDSS)的应用。(3)评价方法的动态化动态评价方法分两类:一类是确定评价指标在不同时刻的权重系数,是目前研究的热点;第二类,因为在时间序列中对象的

7、属性在变化,在不同时间评价指标也应当调整,这方面的研究尚属起步。(4)对评价对象的评价和对评价人的评价的集成这种集成就是评价要素集成化。传统的评价方法是研究被评价对象的多属性指标的集成化问题。但对含有软指标或构造不良的对象的评价往往离不开专家,专家的偏好和水平对评价结果会有重要影响。基于评价人集的专家群评价方法的研究,旨在解决对含有软指标或构造不良的对象进展评价时,由于专家判断的主观性而引起的评价结论不一致问题。专家群评价研究的思路是将对对象的评价和对专家的评价结合起来,实际上表达了集成的思想。(5)集成价值链绩效综合评价思想价值链集成化迈克尔波特(哈佛大学)在竞争优势中引入价值链分析方法,将

8、企业以及相关联的主体看作创造同一个价值的整体。许多学者提出,集成价值链综合评价方法注重企业的整体绩效:一方面对顾客价值采用定性评价方法;另一方面对供给链进展全过程评价,得到综合绩效。3)推广和开展现有综合评价方法现有的综合评价方法往往理论研究与实际应用脱节。随着理论研究的深入,评价方法越来越复杂,又没有有效地面向广阔的实际工作者,以至实际工作者望而生畏。理论成果的推广应用受到很大的局限。应该说目前不少的研究成果具有一定的理论意义,但理论与实践严重脱节的现象也是不争的事实。综合评价方法的研究首先应加强基于方法集的组合评价研究。方法集是指能独立完成对对象进展评价的方法的全体。基于方法集的组合评价方

9、法是指,在评价的根本原则指导下,根据一定。的准则和规则从根本评价方法集中抽取假设干方法,并运用这些评价方法对被评价对象进展评价,然后寻找理想的组合算法模型对以上评价结果进展优化组合的全过程。4)运用先进技术方法,构成集成式综合评价支持系统目前出现的一些评价系统的集成化程度和智能化程度都是较低的,而且这些系统中的方法根本是MODM的有关方法,其它如AHP,DEA等方法都很少涉及。将决策分析方法同专家系统结合将会进一步增强系统的问题求解能力和人机交互友好性。要对复杂对象系统进展有效的评价,就必须将评价专家(群体)的经历和知识、评价指标的数据信息、多种评价方法、相关的先进技术(如人工智能、知识工程、

10、专家系统、人工神经网络、模糊集理论、计算机信息处理技术等)、计算机软硬件有机结合起来,从而构成一集成式智能化评价支持系统。综合评价指标体系建立的原则指标体系是综合评价的根底,合理的指标体系是保证综合评价质量的关键问题之一。所以建立科学的综合评价指标体系首先应遵循以下原则。1)与目标一致原则综合评价首先要确定被评对象及评价目标。评价目标主要由评价指标体系来表达。因此在建立指标体系时必须要保证和评价目标的一致性。2)科学性原则建立指标体系时应坚持科学性原则,遵循事物的开展规律,便于应用现代的科学技术,保证指标体系自身的内容、构造等科学合理。3)全面性原则对于一个综合评价问题,指标体系应能反映所有的

11、重点方面,对重要目标、信息没有遗漏,这样才能保证综合评价的全面性。4)有效性原则也称非冗余性原则。在遵循全面性原则的同时,指标体系的设立也不应盲目求全、求精,而应力求指标简单有效。对于对评价目标无重要影响,或各被评对象间无差异的指标应通过筛选进展删除。5)独立性原则指标体系同层次的指标应相互独立,这样才能保证对同一目标不会重复计算,同时各指标的相互独立也是各种加权法的前提。但不同层次的指标间可以是附属关系,而不要求独立性。6)可测性原则指标体系的各指标必须易于理解,无二义性,其所包含的内容必须可以直接或间接测定。系统综合评价的方法评价需要解决的主要问题是分类、排序和整体评价,评价方法主要围绕此

12、类目的展开。有关系统评价的理论和方法大致可以分为三类:一是以数理理论为根底的方法。它以数学理论和解析方法对评价系统进展定量描述和计算,通常需要在一定的假设条件下进展评价。评价方法主要有模糊分析法、灰色系统分析法、技术经济分析法等;二是以统计分析为主的方法。其特点是把统计样本数据看做随机数据处理,对指标数据进展转化,所得均值、方差、协方差反映指标潜在的规律,通过统计方法对指标体系进展分析,得出在大样本数据下对评价对象的综合认识。评价方法有主成分分析法、因子分析法、聚类分析法、判别分析法、关联分析法、层次分析法等;三是重现决策支持的方法。以计算机系统仿真和模拟技术为主,研究如何使系统的运行和人类行

13、为目标的一致,以此得出系统评价结果。灰色关联分析法灰色系统与灰色关联分析1982年我国学者邓聚龙教授发表第一篇中文论文灰色控制系统标志着灰色系统这一学科诞生。之后,灰色系统在理论方法和实际应用上均有了长足的进展,为预测和决策提供了全新的思路和方法。灰色关联分析是灰色系统理论的一个重要分支,应用灰色关联分析方法对受多种因素影响的事物和现象从整体观念出发进展综合评价是一个被广为承受的方法。灰色关联分析是一种用灰色关联度顺序来描述因素间关系的强弱、大小、次序的方法,是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的奉献测度的一种方法。其根本思想是:以因素的数据序列为依据,用数学的方

14、法研究因素间的几何对应关系,即序列曲线的几何形状越接近,则它们之间的灰关联度越大,反之越小。在数理上将它转化为量化比拟,将几何曲线之间的比拟转化为数据列与数据列之间的比拟。灰色关联分析实际上也是动态指标的量化分析,充分表达了动态意义。灰色关联分析的步骤1)评价数据矩阵的建立根据评价目确实定评价指标体系,收集评价数据。设t1个数据序列形成如下矩阵:对指标数据进展标准化。标准化后的数据序列形成如下矩阵:1)确定参考数列参考数列应该是一个理想的比拟标准,可以以各指标的最优值(或最劣值)构成参考数据列,也可以根据评价目的选择相应的参照值。数据矩阵就是和参考数列进展比拟计算,求出最接近参考数列的数据行或

15、者列。将参考数列记作:3)计算差序列,求两极最大、最小差逐个计算每个被评价对象指标序列与参考序列对应元素的绝对差值。求出差序列之后,确定以便进展下面的数值计算。4)计算关联系数由下式,分别计算每个指标序列与参考序列对应元素的关联系数。其中七=l,2,m。r为分辨系数,在(0,1)内取值。假设厂越小,关联系数间的差异越大,区分能力越强。通常,r 取05。如果为最优值数据列,则z(k)越大越好。5)计算灰色关联度对各评价对象分别计算其各指标与参考数列对应元素的关联系数的均值,以反映各评价对象与参考数列的关联关系,并称其为灰色关联度,记为:如果各指标在综合评价中所起的作用不同,即各指标的权重大小不同

16、,可对关联系数求加权平均值,即:6)依据灰色关联度排序根据以上公式计算出来的灰色关联度的大小是衡量序列之间严密程度的一种尺度,我们主要关心的是评价指标序列与参考数列关联度大小的顺序。依据各观察对象计算得出的灰色关联度进展排序,得出最后的综合评价结果。灰色关联分析法的改良对数据预处理的改良在传统的灰色关联法在进展分析时,首先对数据进展预处理,即无量纲处理,然而在实际应用中,有的序列由不同的物理量组成,且数量级相差较大时,就不能进展无量纲处理;对于能进展无量纲处理的序列,经过处理后会使变化*围较小的因素权重加大,使变化*围较大的因素作用减弱,导致影响因素等同化,同时还增加计算量。因此数据无量纲化这

17、一步骤未必合理,一种对灰色关联分析方法进展的改良是对数据不作任何处理,简化计算过程,这样既防止了因素等同化,又能客观反映各项被评价指标的综合效应。但是这种改良方法须依据实际评价模型情况而定,评价者须对所要评价的问题有比拟深入和全面的认识才可以有效应用该改良方法得出客观准确的评价。对指标赋权方法的改良GRA的核心是计算关联度,原有的关联度计算公式对各样本采用平权处理,客观性较差,不符合*些样本更为重要的实际情况。针对这一方向对指标赋权方法进展改良,最后对关联系数求加权平均值计算得到的关联度将更加贴近实际情况,提高了灰色关联分析的客观性。现介绍两种为灰色关联度中指标赋权的改良方法。1)基于层次分析

18、法的改良层次分析法把复杂问题中的各种因素通过划分为相互联系的有序层次,使之条理化,并把数据、专家意见和分析者的主客观判断直接而有效地结合起来,就每一层次的相对重要性给予定量表示,然后用数学方法确定表达每一层次全部要素的相对重要性权数。运用层次分析法求指标权重的计算过程下文将予以描述。基于层次分析法计算出的指标权重,来进展关联度的计算和排序,从而得出客观的评价结果。2)基于距离分析法的改良距离分析法的根本思想是,一般以最优样本(也称理想样本)和最劣样本(也称负理想样本)为参考样本。计算各个样本离参考样本的距离,离最优样本点近,离最劣样本远的样本为总体较好的样本。该方法以样本点到最优样本点的相对接

19、近度赋权。对参考数列选取的改良传统灰色关联分析方法已在实际中广泛运用。然而该方法十分依赖对参考数列的准确性,当参考信号的特征比拟分散,具有比拟大的自由性,关联分析的准确性和可靠性都将大大地降低。该方法对参考数列的选取进展了改良。假设有m b个参考数列,如下:其中属于同一族参考数列,记为y,它的各个分量之间具有较强关联性,同时在*种程度上又有一定的独立性。参考数列和原数据矩阵相互关系如图32所示,其中包括两族参考数列(y1,y2)和两个比拟数列,每族参考数列又包括4个单个参考数列:同传统的灰色关联分析相比,该改良灰色关联分析具有两个优点:(1)提高灰色关联分析的准确性和可靠性。改良灰色关联分析方

20、法的效果不倚赖于单个的参考数列,而是取决于一族参考数列的整体性能,所以它比传统的方法准确性和可靠性更高。(2)降低了对参考数列数据准确性的要求,比传统的灰色关联分析有更广的应用*围。改良灰色关联分析方法可应用于参考数列具有较强分散性和独立性的领域。对分辨系数r取值的改良传统灰色关联分析中分辨系数r的一般取值为05,但实际上关联系数z(k)不仅与参考序列K和评价数据矩阵有关,而且与关联空间位置有关。这是由于关联度通过差值绝对值的最大值表征整个系统的整体性,而分辨系数r作为最大值的权重,它的取值大小在主观上表达了研究者对最大值的重视程度,在客观上则反映了系统的各个因素对关联度的间接影响程度。因此在

21、改良的灰色关联分析中对,的取值进展了合理的规定,既要充分表达关联度的整体性,还要具有抗干扰的作用,即能够削弱观测比拟序列中的异常值对整个关联空间的误差影响。据此分辨系数r确实定方法如下:首先根据上文建立三维的关联空间,假设被评价数据序列指标个数为m,被评价样本个数为n,选择的参考数列个数为t,记则r的取值区间为:根据上式确定了分辨系数r的动态取值,再根据关联系数和关联度计算公式完成接下来的评价工作。该方法通过新的分辨系数确定方法改良了关联系数计算公式,使关联度计算建立在空间的整体性和低误差影响的根底之上,从而进一步提高了灰色关联分析方法的分辨率和可靠度。灰色关联分析方法评价灰色关联分析是按事物的开展趋势做分析,因此对样本量的多少没有过多的要求,也不需要典型的分布规律,而且计算量比拟小,其结果与定性分析结果会比拟吻合,所以灰色关联分析是一种很具有自己独特优势的、比拟实用和可靠的分析评价方法。在实际应用中,灰色关联分析方法具有十分广泛的应用*围。只要将研究对象的信息收集成功并科学的预处理,就

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论