2022届北京北师特学校高考数学考前最后一卷预测卷含解析_第1页
2022届北京北师特学校高考数学考前最后一卷预测卷含解析_第2页
2022届北京北师特学校高考数学考前最后一卷预测卷含解析_第3页
2022届北京北师特学校高考数学考前最后一卷预测卷含解析_第4页
2022届北京北师特学校高考数学考前最后一卷预测卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )ABC6D与点O的位置有关2已知数列为等差数列,为其前 项和,则( )ABCD3若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为( )A

2、2BCD4为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复若该市老年低收入家庭共有900户,则下列说法错误的是()A该市总有 15000 户低收入家庭B在该市从业人员中,低收入家庭共有1800户C在该市无业人员中,低收入家庭有4350户D在该市大于18岁在读学生中,低收入家庭有 800 户5已知集合,若,则( )A4B4C8D86高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,已知函数(),则函数的值域为( )ABCD7已知正项等比数列的前项和为

3、,且,则公比的值为()AB或CD8已知为等腰直角三角形,为所在平面内一点,且,则( )ABCD9已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是( )ABCD10已知集合,则( )ABCD11若双曲线:的一条渐近线方程为,则( )ABCD12在空间直角坐标系中,四面体各顶点坐标分别为:假设蚂蚁窝在点,一只蚂蚁从点出发,需要在,上分别任意选择一点留下信息,然后再返回点那么完成这个工作所需要走的最短路径长度是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知点是抛物线上动点,是抛物线的焦点,点的坐标为,则的最小值为_14已知,满足约束条件,则的最小值

4、为_.15在的二项展开式中,所有项的系数之和为1024,则展开式常数项的值等于_16已知关于的方程在区间上恰有两个解,则实数的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,直线y=2x-2与抛物线x2=2py(p0)交于M1,M2两点,直线y=p2与y轴交于点F,且直线y=p2恰好平分M1FM2.(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M3交直线y=p2于点B,求OAOB的值.18(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等

5、的长度单位,建立极坐标系.(1)设直线l的极坐标方程为,若直线l与曲线C交于两点AB,求AB的长;(2)设M、N是曲线C上的两点,若,求面积的最大值.19(12分)P是圆上的动点,P点在x轴上的射影是D,点M满足(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程20(12分)已知点,直线与抛物线交于不同两点、,直线、与抛物线的另一交点分别为两点、,连接,点关于直线的对称点为点,连接、(1)证明:;(2)若的面积,求的取值范围21(12分)在等比数列中,已知,.设数列的前n项和为,

6、且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.22(10分)如图,在平面直角坐标系中,椭圆的离心率为,且过点.求椭圆的方程;已知是椭圆的内接三角形,若点为椭圆的上顶点,原点为的垂心,求线段的长;若原点为的重心,求原点到直线距离的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是

7、由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.2B【解析】利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【详解】由等差数列的性质可得,.故选:B.【点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.3B【解析】由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【详解】双曲线的一条渐近线与直线垂直双曲线的渐近线方程

8、为,得则离心率故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.4D【解析】根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭9006%15000(户),A正确,该市从业人员中,低收入家庭共有1500012%1800(户),B正确,该市无业人员中,低收入家庭有1500029%4350(户),C正确,该市大于18 岁在读学生中,低收入家庭有150004%600(户),D错误故选:D.【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析

9、图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.5B【解析】根据交集的定义,可知,代入计算即可求出.【详解】由,可知,又因为,所以时,解得.故选:B.【点睛】本题考查交集的概念,属于基础题.6B【解析】利用换元法化简解析式为二次函数的形式,根据二次函数的性质求得的取值范围,由此求得的值域.【详解】因为(),所以,令(),则(),函数的对称轴方程为,所以,所以,所以的值域为.故选:B【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.7C【解析】由可得,故可求的值.【详解】因为,所以,故,因为正项

10、等比数列,故,所以,故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3) 为等比数列( )且公比为.8D【解析】以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【详解】如图建系,则,由,易得,则.故选:D【点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.9D【解析】根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利

11、用过某一点曲线切线斜率的求解方法可求得和,进而得到结果.【详解】关于直线对称的直线方程为:原题等价于与有且仅有四个不同的交点由可知,直线恒过点当时,在上单调递减;在上单调递增由此可得图象如下图所示:其中、为过点的曲线的两条切线,切点分别为由图象可知,当时,与有且仅有四个不同的交点设,则,解得:设,则,解得:,则本题正确选项:【点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.10C【解析】解不等式得出集合A,根据交集的定义写出AB【详

12、解】集合Ax|x22x30 x|1x3,故选C【点睛】本题考查了解不等式与交集的运算问题,是基础题11A【解析】根据双曲线的渐近线列方程,解方程求得的值.【详解】由题意知双曲线的渐近线方程为,可化为,则,解得.故选:A【点睛】本小题主要考查双曲线的渐近线,属于基础题.12C【解析】将四面体沿着劈开,展开后最短路径就是的边,在中,利用余弦定理即可求解.【详解】将四面体沿着劈开,展开后如下图所示:最短路径就是的边易求得,由,知,由余弦定理知其中,故选:C【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【

13、解析】过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当和抛物线相切时,的值最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得的最小值.【详解】解:由题意可得,抛物线的焦点,准线方程为,过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.故当最小时,的值最小.设切点,由的导数为,则的斜率为,求得,可得,.故答案为:.【点睛】本题考查抛物线的定义,性质的简单应用,直线的斜率公式,导数的几何意义,属于中档题.14【解析】作出约束条件所表示的可行域,利用直线截距的几何意义,即可得答案.【详解】画出可行域易知在点处取最小值为.故答案为:【点睛】本题考查简单线性规划

14、的最值,考查数形结合思想,考查运算求解能力,属于基础题.15【解析】利用展开式所有项系数的和得n=5,再利用二项式展开式的通项公式,求得展开式中的常数项.【详解】因为的二项展开式中,所有项的系数之和为4n=1024, n=5,故的展开式的通项公式为Tr+1=C35-r,令,解得r=4,可得常数项为T5=C3=15,故填15.【点睛】本题主要考查了二项式定理的应用、二项式系数的性质,二项式展开式的通项公式,属于中档题.16【解析】先换元,令,将原方程转化为,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出【详解】因为关于的方程在区间上恰有两个解,令,所以方程在 上只有一解,即有 ,直

15、线与 在的图像有一个交点,由图可知,实数的取值范围是,但是当时,还有一个根,所以此时共有3个根.综上实数的取值范围是.【点睛】本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)p=4;(2)OAOB=20.【解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)x1+x2x1x2=0,结合跟鱼系数关系,可求得p=4;(2)设M3(x3,x

16、328),A(t,2),B(a,2),由A,M2,M3,三点共线得kM2M3=kAM2,再次代入点的坐标并化简得x2x3-t(x2+x3)=-16,同理由B,M3,M1三点共线,可得x1x3-a(x1+x3)=-16,化简得at=16,故OAOB=at+4=16+4=20.试题解析:(1)由y=2x-2x2=2py,整理得x2-4px+4p=0,设M1(x1,y1),M2(x2,y2),则=16p2-16p0 x1+x2=4px1x2=4p,因为直线y=p2平分M1FM2,kM1F+kM2F=0,所以y1-p2x1+y2-p2x2=0,即2x1-2-p2x1+2x2-2-p2x2=0,所以4-

17、(2+p2)x1+x2x1x2=0,得p=4,满足0,所以p=4.(2)由(1)知抛物线方程为x2=8y,且x1+x2=16x1x2=16,M1(x1,x128),M2(x2,x228),设M3(x3,x328),A(t,2),B(a,2),由A,M2,M3,三点共线得kM2M3=kAM2,所以x2+x38=x228-2x2-t,即,整理得:x2x3-t(x2+x3)=-16,由B,M3,M1三点共线,可得x1x3-a(x1+x3)=-16,式两边同乘x2得:x1x2x3-a(x1x2+x2x3)=-16x2,即:16x3-a(16+x2x3)=-16x2,由得:x2x3=t(x2+x3)-1

18、6,代入得:16x3-16a-ta(x2+x3)+16a=-16x2,即:16(x2+x3)=at(x2+x3),所以at=16.所以OAOB=at+4=16+4=20.考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p2平分M1FM2,有kM1F+kM2F=0,这样我们根据斜率的计算公式k=y2-y1x2-x1,代入点的坐标,就可以计算出p的值.第二问主要利用三点共线来求解.18(1);(2)1.【

19、解析】(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2),由(1)通过计算得到,即最大值为1.【详解】(1)将曲线C的参数方程化为普通方程为,即;再将,代入上式,得,故曲线C的极坐标方程为,显然直线l与曲线C相交的两点中,必有一个为原点O,不妨设O与A重合,即.(2)不妨设,则面积为当,即取时,.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,三角形面积的最值问题,是一道容易题.19(1)点M的轨迹C的方程为,轨迹C是以,为焦点,长轴长为4的椭圆(2)【解析】(1)设,根据可求得,代入圆的方程可得所求轨迹方程;根据轨迹方程可知轨迹是以,为焦点,长轴长为的椭圆;(2)设,与

20、椭圆方程联立,利用求得;利用韦达定理表示出与,根据平行四边形和向量的坐标运算求得,消去后得到轨迹方程;根据求得的取值范围,进而得到最终结果.【详解】(1)设,则由知:点在圆上 点的轨迹的方程为:轨迹是以,为焦点,长轴长为的椭圆(2)设,由题意知的斜率存在设,代入得:则,解得:设,则四边形为平行四边形又 ,消去得: 顶点的轨迹方程为【点睛】本题考查圆锥曲线中的轨迹方程的求解问题,关键是能够利用已知中所给的等量关系建立起动点横纵坐标满足的关系式,进而通过化简整理得到结果;易错点是求得轨迹方程后,忽略的取值范围.20(1)见解析;(2)【解析】(1)设点、,求出直线、的方程,与抛物线的方程联立,求出

21、点、的坐标,利用直线、的斜率相等证明出;(2)设点到直线、的距离分别为、,求出,利用相似得出,可得出的边上的高,并利用弦长公式计算出,即可得出关于的表达式,结合不等式可解出实数的取值范围.【详解】(1)设点、,则,直线的方程为:,由,消去并整理得,由韦达定理可知,代入直线的方程,得,解得,同理,可得,,代入得,因此,;(2)设点到直线、的距离分别为、,则,由(1)知,同理,得,由,整理得,由韦达定理得,得,设点到直线的高为,则,解得,因此,实数的取值范围是.【点睛】本题考查直线与直线平行的证明,考查实数的取值范围的求法,考查抛物线、直线方程、韦达定理、弦长公式、直线的斜率等基础知识,考查运算求解能力,考查数形结合思想,是难题21(1)(2)见解析(3)存在唯一的等差数列,其通项公式为,满足题设【解析】(1)由,可得公比,即得;(2)由(1)和可得数列的递推公式,即可知结果为常数,即得证;(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论