版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的图象大致为( )ABCD2复数满足,则复数等于()ABC2D-23已知平面向量,满足,且,则( )A3BCD54在三棱锥中,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为( )ABCD5木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积( ) ABCD6一辆邮车从地往地运送邮件,沿途共有地,依次记为,(为地,为地)从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同
3、时装上该地发往后面各地的邮件各1件,记该邮车到达,各地装卸完毕后剩余的邮件数记为则的表达式为( )ABCD7若函数的图象如图所示,则的解析式可能是( )ABCD8记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为( )A2阶区间B3阶区间C4阶区间D5阶区间9已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是( )ABCD10直角坐标系中,双曲线()与抛物线相交于、两点,若是等边三角形,则该双曲线的离心率( )ABCD11已知复数满足,则的最大值为( )ABCD612已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为( )ABC3D
4、5二、填空题:本题共4小题,每小题5分,共20分。13已知,为双曲线的左、右焦点,双曲线的渐近线上存在点满足,则的最大值为_14已知平面向量,且,则向量与的夹角的大小为_15电影厉害了,我的国于2018年3月正式登陆全国院线,网友纷纷表示,看完电影热血沸腾“我为我的国家骄傲,我为我是中国人骄傲!”厉害了,我的国正在召唤我们每一个人,不忘初心,用奋斗书写无悔人生,小明想约甲、乙、丙、丁四位好朋友一同去看厉害了,我的国,并把标识为的四张电影票放在编号分别为1,2,3,4的四个不同的盒子里,让四位好朋友进行猜测:甲说:第1个盒子里放的是,第3个盒子里放的是乙说:第2个盒子里放的是,第3个盒子里放的是
5、丙说:第4个盒子里放的是,第2个盒子里放的是丁说:第4个盒子里放的是,第3个盒子里放的是小明说:“四位朋友你们都只说对了一半”可以预测,第4个盒子里放的电影票为_16在平面直角坐标系中,曲线在点处的切线与x轴相交于点A,其中e为自然对数的底数.若点,的面积为3,则的值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设数列an的前n项和为Sn,且a1=1,an+1=2Sn+1,数列bn满足a1=b1,点P(bn,bn+1)在x-y+2=0上,nN*. (1)求数列an,bn的通项公式;(2)设cn=bnan,求数列cn的前n项和Tn18(12分)已知函数当时,求
6、函数的极值;若存在与函数,的图象都相切的直线,求实数的取值范围19(12分)如图,在中,点在上,.(1)求的值;(2)若,求的长.20(12分)已知,(1)求的最小正周期及单调递增区间;(2)已知锐角的内角,的对边分别为,且,求边上的高的最大值21(12分)已知抛物线,直线与交于,两点,且.(1)求的值;(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直线过定点.22(10分)如图,四边形是边长为3的菱形,平面.(1)求证:平面;(2)若与平面所成角为,求二面角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,
7、只有一项是符合题目要求的。1A【解析】确定函数在定义域内的单调性,计算时的函数值可排除三个选项【详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,排除C,只有A可满足故选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项2B【解析】通过复数的模以及复数的代数形式混合运算,化简求解即可.【详解】复数满足,故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题3B【解析】先求出,再利用求出,再求.【详解】解:由,所以,故选:B
8、【点睛】考查向量的数量积及向量模的运算,是基础题.4A【解析】设的中点为O先求出外接圆的半径,设,利用平面ABC,得 ,在 及中利用勾股定理构造方程求得球的半径即可【详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题5C【解析】由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.【详解】由已知中的三视图知圆锥底
9、面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120,底面剩余部分的面积为,故几何体的体积为:.故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.6D【解析】根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案【详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D【点睛】本题主要考查数列递推公式的应用,属于中档题7A【解析】由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B, 为 奇函数可判断B错误;对于选项C,当时, ,可判断C错误;对于选项D, ,可知函数在第一
10、象限的图象无增区间,故D错误;故选:A.【点睛】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.8D【解析】可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间. 故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题9A【解析】化简为,求出它的图象向
11、左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.【点睛】本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。10D【解析】根据题干得到点A坐标为,代入抛物线得到坐标为,再将点代入双曲线得到离心率.【详解】因为三角形OAB是等边三角形,设直线OA为,设点A坐标为,代入抛物线得到x=2b,故点A的坐标为,代入双曲线得到 故答案为:D.【点睛】求双曲线的离心率(或离心率的取值范围),常
12、见有两种方法:求出,代入公式;只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得 (的取值范围).11B【解析】设,利用复数几何意义计算.【详解】设,由已知,所以点在单位圆上,而,表示点到的距离,故.故选:B.【点睛】本题考查求复数模的最大值,其实本题可以利用不等式来解决.12C【解析】由,再运用三点共线时和最小,即可求解.【详解】.故选:C【点睛】本题考查抛物线的定义,合理转化是本题的关键,注意抛物线的性质的灵活运用,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】设,由可得,整理得
13、,即点在以为圆心,为半径的圆上又点到双曲线的渐近线的距离为,所以当双曲线的渐近线与圆相切时,取得最大值,此时,解得14【解析】由,解得,进而求出,即可得出结果.【详解】解:因为,所以,解得,所以,所以向量与的夹角的大小为都答案为:.【点睛】本题主要考查平面向量的运算,平面向量垂直,向量夹角等基础知识;考查运算求解能力,属于基础题15A或D【解析】分别假设每一个人一半是对的,然后分别进行验证即可【详解】解:假设甲说:第1个盒子里面放的是是对的,则乙说:第3个盒子里面放的是是对的,丙说:第2个盒子里面放的是是对的,丁说:第4个盒子里面放的是是对的,由此可知第4个盒子里面放的是;假设甲说:第3个盒子
14、里面放的是是对的,则丙说:第4个盒子里面放的是是对的,乙说:第2个盒子里面放的是是对的,丁说:第3个盒子里面放的是是对的,由此可知第4个盒子里面放的是故第4个盒子里面放的电影票为或故答案为:或【点睛】本题考查简单的合情推理,考查推理论证能力、分析判断能力、归纳总结能力,属于中档题16【解析】对求导,再根据点的坐标可得切线方程,令,可得点横坐标,由的面积为3,求解即得.【详解】由题,切线斜率,则切线方程为,令,解得,又的面积为3,解得.故答案为:【点睛】本题考查利用导数研究函数的切线,难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)an=3n-1,bn=1+(n
15、-1)2=2n-1(2)Tn=3-123n-2-2n-123n-1=3-n+13n-1.【解析】(1)利用an与Sn的递推关系可以an的通项公式;P点代入直线方程得bn+1-bn=2,可知数列bn是等差数列,用公式求解即可.(2)用错位相减法求数列的和.【详解】(1)由an+1=2Sn+1可得an=2Sn-1+1(n2),两式相减得an+1-an=2an,an+1=3an(n2)又a2=2S1+1=3,所以a2=3a1故an是首项为1,公比为3的等比数列所以an=3n-1由点P(bn,bn+1)在直线x-y+2=0上,所以bn+1-bn=2则数列bn是首项为1,公差为2的等差数列则bn=1+(
16、n-1)2=2n-1(2)因为cn=bnan=2n-13n-1,所以Tn=130+331+532+2n-13n-1则13Tn=131+332+533+2n-33n-1+2n-13n,两式相减得:23Tn=1+23+232+23n-1-2n-13n所以Tn=3-123n-2-2n-123n-1=3-n+13n-1【点睛】用递推关系an=Sn-Sn-1(n2)求通项公式时注意n的取值范围,所求结果要注意检验n=1的情况;由一个等差数列和一个等比数列的积组成的数列求和,常用错位相减法求解.18(1)当时,函数取得极小值为,无极大值;(2)【解析】试题分析:(1),通过求导分析,得函数取得极小值为,无
17、极大值;(2),所以,通过求导讨论,得到的取值范围是试题解析:(1)函数的定义域为当时,所以 所以当时,当时,所以函数在区间单调递减,在区间单调递增,所以当时,函数取得极小值为,无极大值; (2)设函数上点与函数上点处切线相同,则 所以 所以,代入得: 设,则不妨设则当时,当时,所以在区间上单调递减,在区间上单调递增, 代入可得:设,则对恒成立,所以在区间上单调递增,又所以当时,即当时, 又当时 因此当时,函数必有零点;即当时,必存在使得成立;即存在使得函数上点与函数上点处切线相同又由得:所以单调递减,因此所以实数的取值范围是19 (1) ;(2).【解析】(1)由两角差的正弦公式计算;(2)
18、由正弦定理求得,再由余弦定理求得【详解】(1)因为,所以.因为,所以,所以.(2)在中,由,得,在中,由余弦定理可得,所以.【点睛】本题考查两角差的正弦公式,考查正弦定理和余弦定理,属于中档题20(1)的最小正周期为:;函数单调递增区间为:;(2).【解析】(1)根据诱导公式,结合二倍角的正弦公式、辅助角公式把函数的解析式化简成余弦型函数解析式形式,利用余弦型函数的最小正周期公式和单调性进行求解即可;(2)由(1)结合,求出的大小,再根据三角形面积公式,结合余弦定理和基本不等式进行求解即可.【详解】(1)的最小正周期为:;当时,即当时,函数单调递增,所以函数单调递增区间为:;(2)因为,所以设边上的高为,所以有,由余弦定理可知:(当用仅当时,取等号),所以,因此边上的高的最大值.【点睛】本题考查了正弦的二倍角公式、诱导公式、辅助角公式,考查了余弦定理、三角形面积公式,考查了基本不等式的应用,考查了数学运算能力.21(1);(2)见解析【解析】(1)联立直线和抛物线,消去可得,求出,再代入弦长公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉溪师范学院《电气控制技术》2022-2023学年期末试卷
- 2024标准正规借款合同书
- 盐城师范学院《微机原理与接口技术》2021-2022学年期末试卷
- 人教版四年级上册数学第四单元《三位数乘两位数》测试卷可打印
- 北京版四年级下册数学第三单元 平行与相交 测试卷附参考答案【巩固】
- 苏教版四年级下册数学第三单元 三位数乘两位数 测试卷附答案(考试直接用)
- 年产10GWh储能电池系统项目环评报告表
- 废旧轮胎、塑料再生资源回收利用项目环评报告表
- 心脏骤停的应急处理练习卷含答案
- 盐城师范学院《轮滑》2022-2023学年第一学期期末试卷
- 有机肥料项目验收方案
- 餐券模板完整
- 三查四定表完整版本
- 江苏省连云港市东海县2023-2024学年七年级上学期期中道德与法治·历史试卷(解析版)
- (完整文本版)货物验收单
- 广东省深圳市2023一2024学年三年级上学期科学期中核心素养提升试卷
- 江苏省南通市海门区多校2023-2024学年上学期期中联考八年级数学试卷
- 人教版九年级道德与法治 上册 第三单元《文明与家园》大单元整体教学设计
- 铭记历史勿忘国耻(课件)小学生主题班会通用版
- 电能表安装作业指导书
- 新时代外语教育课程思政建设的几点思考
评论
0/150
提交评论