版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知展开式的二项式系数和与展开式中常数项相等,则项系数为( )A10B32C40D802复数的共轭复数在复平面内所对应的点位于( )A第一象限B第二象限C第三象限D第四象限3某几何体的三视图如图所示,则该几何体的体积为( )AB3CD44已知函数,当时,不等式恒成立,则实数a的取值范围为( )ABCD5设集合,则集合ABCD6已知集合,若,则的最小值为( )A1B2C3D47设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形
3、为菱形,则该双曲线的渐近线方程为( )ABCD8如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A2对B3对C4对D5对9已知函数在上有两个零点,则的取值范围是( )ABCD10已知集合,集合,若,则( )ABCD11已知等差数列的前项和为,若,则等差数列公差()A2BC3D412计算等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,则函数的极大值为 _14已知圆,直线与圆交于两点,若,则弦的长度的最大值为_.15我国著名的数学家秦九韶在数书九章提出了“三斜求积术”他把三角形的三条边分别称为小斜、中斜和大斜三斜求积术就
4、是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积所谓“实”、“隅”指的是在方程中,p为“隅”,q为“实”即若的大斜、中斜、小斜分别为a,b,c,则.已知点D是边AB上一点,则的面积为_16已知为等比数列,是它的前项和.若,且与的等差中项为,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知是抛物线的焦点,点在轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于、两点,且.(1)求抛物线的方程;(2)直线与抛物线交
5、于、两点,若,求点到直线的最大距离.18(12分)古人云:“腹有诗书气自华.”为响应全民阅读,建设书香中国,校园读书活动的热潮正在兴起.某校为统计学生一周课外读书的时间,从全校学生中随机抽取名学生进行问卷调査,统计了他们一周课外读书时间(单位:)的数据如下:一周课外读书时间/合计频数46101214244634频率0.020.030.050.060.070.120.250.171(1)根据表格中提供的数据,求,的值并估算一周课外读书时间的中位数.(2)如果读书时间按,分组,用分层抽样的方法从名学生中抽取20人.求每层应抽取的人数;若从,中抽出的学生中再随机选取2人,求这2人不在同一层的概率.1
6、9(12分)在中,()求角的大小;()若,求的值20(12分)已知函数,(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值21(12分)如图,已知抛物线:与圆: ()相交于, , ,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.22(10分)已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展
7、开式的二项式系数和为由所以当时,所以项系数为故选:D【点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.2D【解析】由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标得结论【详解】,对应点为,在第四象限故选:D.【点睛】本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义掌握复数的运算法则是解题关键3C【解析】首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所示:故:.故选:C.【点睛】本题考查了由三
8、视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.4D【解析】由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得取值范围.【详解】,即函数在时是单调增函数.则恒成立. .令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.5B【解析】先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.【详解】对于集合A,解得或,故.对于集合B,解得.故.故选B.【点睛】本小题主要考查一元二次不等式的解法,考查对数不等式的解法
9、,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.6B【解析】解出,分别代入选项中 的值进行验证.【详解】解:,.当 时,,此时不成立.当 时,,此时成立,符合题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.7B【解析】由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【详解】如图,因为四边形为菱形,所以为等边三角形,两渐近线的斜率分别为和.故选:B【点睛】此题考查的是求双曲线的
10、渐近线方程,利用了数形结合的思想,属于基础题.8C【解析】画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面平面,作POAD于O,则有PO平面ABCD,POCD,又ADCD,所以,CD平面PAD,所以平面平面,同理可证:平面平面,由三视图可知:POAOOD,所以,APPD,又APCD,所以,AP平面PCD,所以,平面平面,所以该多面体各表面所在平面互相垂直的有4对【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题9C【解析】对函数求导,对a分类讨论,分别求得函数的单
11、调性及极值,结合端点处的函数值进行判断求解.【详解】 ,.当时,在上单调递增,不合题意.当时,在上单调递减,也不合题意.当时,则时,在上单调递减,时,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题10A【解析】根据或,验证交集后求得的值.【详解】因为,所以或.当时,不符合题意,当时,.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.11C【解析】根据等差数列的求和公式即可得出【详解】a1=12,S5=90,512+ d=90,解得d=1故选C【点睛】本题主要
12、考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题12A【解析】利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.【详解】,故解得, ,令,解得函数在单调递增,在单调递减,故的极大值为故答案为:.【点睛】本题考查函数极值的求解,难点是要通过赋值,求出未知量.14【解析】取的中点为M,由可得,可得M在上,当最小时,弦的长才最大.【详解】设为的中点,即,即,.设,则,
13、得.所以,.故答案为:【点睛】本题考查直线与圆的位置关系的综合应用,考查学生的逻辑推理、数形结合的思想,是一道有一定难度的题.15.【解析】利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求积术”公式即可求得答案.【详解】,所以,由余弦定理可知,得.根据“三斜求积术”可得,所以.【点睛】本题考查正切的和角公式,同角三角函数的基本关系式,余弦定理的应用,考查学生分析问题的能力和计算整理能力,难度较易.16【解析】设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【详解】由等比数列的性质可得,由于与的等差中项为,则,则,因此,.故答案为:.【点睛
14、】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)求得点的坐标,可得出直线的方程,与抛物线的方程联立,结合求出正实数的值,进而可得出抛物线的方程;(2)设点,设的方程为,将直线的方程与抛物线的方程联立,列出韦达定理,结合求得的值,可得出直线所过定点的坐标,由此可得出点到直线的最大距离.【详解】(1)易知点,又,所以点,则直线的方程为.联立,解得或,所以.故抛物线的方程为;(2)设的方程为,联立有,设点,则,所以.所以,解得.所以直线的方程为,恒过点.又点,故当直线与轴垂
15、直时,点到直线的最大距离为.【点睛】本题考查抛物线方程的求解,同时也考查了抛物线中最值问题的求解,涉及韦达定理设而不求法的应用,考查运算求解能力,属于中等题.18(1),中位数;(2)三层中抽取的人数分别为2,5,13;【解析】(1)根据频率分布直方表的性质,即可求得,得到,再结合中位数的计算方法,即可求解.(2)由题意知用分层抽样的方法从样本中抽取20人,根据抽样比,求得在三层中抽取的人数;由知,设内被抽取的学生分别为,内被抽取的学生分别为,利用列举法得到基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】(1)由题意,可得,所以,.设一周课外读书时间的中位数为小时,则,解得,即一
16、周课外读书时间的中位数约为小时.(2)由题意知用分层抽样的方法从样本中抽取20人,抽样比为,又因为,的频数分别为20,50,130,所以从,三层中抽取的人数分别为2,5,13.由知,在,两层中共抽取7人,设内被抽取的学生分别为,内被抽取的学生分别为,若从这7人中随机抽取2人,则所有情况为,共有21种,其中2人不在同一层的情况为,共有10种.设事件为“这2人不在同一层”,由古典概型的概率计算公式,可得概率为.【点睛】本题主要考查了频率分布直方表的性质,中位数的求解,以及古典概型的概率计算等知识的综合应用,着重考查了分析问题和解答问题的能力,属于基础题.19 (1) ;(2) .【解析】试题分析:
17、(1)由正弦定理得到消去公因式得到所以 进而得到角A;(2)结合三角形的面积公式,和余弦定理得到,联立两式得到解析:(I)因为,所以,由正弦定理,得 又因为 ,所以 又因为 , 所以 (II)由,得,由余弦定理,得,即,因为,解得 .因为 ,所以 .20(1)见解析 (2)的最小值为【解析】(1)由题可得函数的定义域为,当时,令,可得;令,可得,所以函数在上单调递增,在上单调递减; 当时,令,可得;令,可得或,所以函数在,上单调递增,在上单调递减;当时,恒成立,所以函数在上单调递增 综上,当时,函数在上单调递增,在上单调递减;当时,函数在,上单调递增,在上单调递减;当时,函数在上单调递增 (2
18、)方法一:当时,设,则,所以函数在上单调递减,所以,当且仅当时取等号当时,设,则,所以,设,则,所以函数在上单调递减,且,所以存在,使得,所以当时,;当时, 所以函数在上单调递增,在上单调递减,因为,所以,所以,当且仅当时取等号所以当时,函数取得最小值,且,故函数的最小值为 方法二:当时,则,令,则,所以函数在上单调递增, 又,所以存在,使得,所以函数在上单调递减,在上单调递增, 因为,所以当时,恒成立,所以当时,恒成立,所以函数在上单调递减,所以函数的最小值为21(1)(2)点的坐标为【解析】将抛物线方程与圆方程联立,消去得到关于的一元二次方程, 抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的面积公式可得四边形的面积的表达式,令,由及知,对关于的面积函数进行求导,判断其单调性和最值,即可求出四边形的面积取得最大值时的值,进而求出点坐标.【详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新科版选择性必修1物理上册阶段测试试卷
- 2024年粤教新版九年级科学上册阶段测试试卷
- 生物制造产业园项目可行性与市场分析报告
- 二零二五年度合同终止通知发布与合同解除通知合同3篇
- 2025年沪教版九年级生物上册月考试卷
- 2025年湘教新版高一数学下册阶段测试试卷
- 二零二五年度国际贸易知识产权保护与维权合同3篇
- 2025年苏教版高二地理上册月考试卷含答案
- 2025年岳麓版四年级数学上册阶段测试试卷
- 2025年北师大版八年级生物上册月考试卷含答案
- 事故隐患报告和举报奖励制度
- 腹部外伤门诊病历
- 品质异常处理及要求培训
- 模具部年终总结--ppt课件
- 立式热虹吸再沸器机械设计说明书
- 国家开放大学电大《生产与运作管理》2025-2026期末试题及答案
- 质量保证大纲(共14页)
- 关于欧盟新版EMC标准EN55032的解析
- 木材材积表0.1-10米.xls
- 轻质隔墙板安装合同协议书范本标准版
- 车辆管理各岗位绩效考核量表
评论
0/150
提交评论