量化投资的新发展—程序化交易技术的最新进展PPT通用课件_第1页
量化投资的新发展—程序化交易技术的最新进展PPT通用课件_第2页
量化投资的新发展—程序化交易技术的最新进展PPT通用课件_第3页
量化投资的新发展—程序化交易技术的最新进展PPT通用课件_第4页
量化投资的新发展—程序化交易技术的最新进展PPT通用课件_第5页
已阅读5页,还剩90页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、量化投资的新发展程序化交易技术的最新进展1研发背景 量化投资简介 程序化交易简介 程序化交易发展与现状 策略开发模式的变革程序化交易策略智能生成系统 原理简介 系统功能演示 功能、性能对比 应用与发展 提 纲 研发背景 量化投资简介 程序化交易简介 程序化交易发展与现状 策略开发模式的变革程序化交易策略智能生成系统 原理简介 系统功能演示 功能、性能对比 应用与发展量化投资简介 提 纲 4所谓量化投资,简单地说就是利用数学、统计学、信息技术的量化投资方法来管理投资组合。数量化投资的组合构建注重的是对宏观数据、市场行为、企业财务数据、交易数据进行分析,利用数据挖掘技术、统计技术、计算方法等处理数

2、据,以得到最优的投资组合和投资机会。 量化投资以先进的数学模型替代人为的主观判断,借助系统强大的信息处理能力,具有更大的投资稳定性,极大地减少投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下做出非理性的投资决策。量化投资,是利用现代数学理论、金融数据与信息技术方法来管理投资组合、进行投资决策的一种现代化的证券分析方法。 量化投资的本质,是将投资思想通过量化指标、参数设计体现到具体的模型中,让模型对市场进行不带有任何情绪的跟踪。这种跟踪将使得投资的广度和深度都得到很大的拓展。 量化方法更多关注“数字”背后的意义,依靠计算机的帮助,分析数据中的统计特征,从而挖掘出其内在的规律,寻求盈利的方法

3、。量化投资的概念:量化投资的本质: 量化投资简介 5量化投资策略:量化投资策略是主动型投资策略的一种,即其认为市场是非有效或弱势有效的从而试图战胜市场以获得超额收益。同时,量化投资策略因为不受到人类思维的局限,因此其覆盖的范围远大于传统主动型投资策略。无法获得超越市场的收益建立量化模型,并借助计算机实现策略以获得超额收益依靠投资人经验判断试图战 胜市场获得超额收益投资策略主动型投资策略传统主动型投资策略量化投资策略被动型投资策略 量化投资简介 6目前来说,量化基金并没有严格的定义。Bloomberg(全球商业、金融信息和财经资讯的领先提供商)认为量化基金因使用量化投资方法而得名,量化基金通过数

4、理统计分析,选择那些未来回报可能会超越基准的证券进行投资,以期获取超越指数基金的收益。对于一个完全的量化基金来说,其最终的买卖决策完全依赖于量化模型。西方国家多年来资本市场的发展,涌现出一大批优秀的量化投资基金。根据Reuters(路透)数据,截至2010年11月,1600只量化基金的总资产高达2600亿美元,年均增长速度高达20%,同期非量化基金的年增长速度仅为8%.国外量化基金发展迅猛:彭博(Bloomberg):成立于1982年的美国彭博资讯公司是目前全球最大的财经资讯公司。彭博仅用了22年的时间,就将它的金融数据市场的销售收入超越了具有150年历史的、世界上最大的资讯公司路透集团。BL

5、OOMBERG PROFESSIONAL(R)(彭博专业)服务及彭博的媒体服务整合在一个平台上为全球各地的公司、新闻机构、金融和法律专业人士提供实时行情、金融市场历史数据、价格、交易信息、新闻和通讯工具。彭博的媒体服务包括在全球拥有130家新闻分社和2,000名新闻专业人员的彭博新闻社 (BLOOMBERG NEWS(R)、每天24小时以7种语言在全球通过10个不同的频道播放财经新闻的彭博电视台 (BLOOMBERG TELEVISION(R) 以及在全球范围内在 XM、Sirius 及 WorldSpace 卫星电台和纽约 WBBR 1130AM 提供即时新闻的彭博电台 (BLOOMBERG

6、 RADIO(SM)。另外,彭博还出版了针对专业投资人士的 BLOOMBERG MARKETS(R) 杂志和 BLOOMBERG PRESS(R) 书籍。彭博公司的创始人布隆伯格是个传奇式人物,在他创造了彭博资讯公司这一全球资讯业大王的同时,2001年他决定竞选美国纽约市市长职位,并一举成功,于2002年1月1日正式就任纽约第108任市长。 量化投资简介 7伴随着市场复杂度日益提升,以个人主观判断为主的传统投资面临较大挑战。量化投资逐渐被认识和认可,国内市场掀起一股量化产品发行热潮,基金、券商、私募都纷纷推出各自的量化产品。据Wind资讯数据统计,截止2012年9月14日,共有22只量化型券商

7、集合理财产品已成立,18只量化基金产品成立,40只量化型阳光私募产品成立。 国内量化投资仍处于起步阶段: 自2009年全国首支量化基金成立以来,量化投资与对冲基金便为越来越多的投资者所熟知。由于量化投资交易策略的业绩稳定,其市场规模和份额不断扩大,虽然迄今为止整个行业刚刚迈入发展的第五年,却显示出旺盛的生命力和光明广阔的前景。各金融机构也纷纷推出创新型量化产品,力争在此千载难逢的蓬勃发展时期搭上量化投资的“顺风车”,分享这个越做越大的量化投资蛋糕。量化投资的到来已为中国资本市场开启了投资的新纪元。量化投资应用大量数据和统计方法,从数据中挖掘规律并据此进行投资。该方法无需对公司进行深入分析,而是

8、寻找一些共同特征大量选股。因此,量化投资可以投资更多股票,同时降低系统风险和投资成本。此外,量化投资尽量避免主观判断,从而降低了投资者情绪的影响。随着我国股市规模和投资机构资金规模的扩大,量化投资方法成为必然的发展趋势,是我国基金行业“生产方式”的历史性变革。我国股市存在着机构扎堆投资、抱团取暖的问题,其结果是市场同涨同跌现象严重,股市波动率和系统风险增大。量化投资在一定程度上可以避免这种问题。量化投资需要一定的机制创新来配合,监管机构应允许卖空机制和金融工具创新,以利于市场分散和对冲风险。 量化投资简介 8尽管量化投资日益受到关注,量化产品发行数量大幅增加,但从目前量化基金所表现的特征看,国

9、内的量化投资发展仍处于起步阶段。从规模上看量化投资产品总规模仍然较小。量化类产品投资策略较为单一,缺乏多元化量化策略的支持。现有量化产品中多数产品投资业绩表现分化,且缺乏稳定性和持续性。国内量化投资仍处于起步阶段: 量化投资简介 提 纲 研发背景 量化投资简介 程序化交易简介 程序化交易发展与现状 策略开发模式的变革程序化交易策略智能生成系统 原理简介 系统功能演示 功能、性能对比 应用与发展程序化交易简介程序化交易(Program Trading),是指投资者利用金融工程建模与计算机技术等手段,将自己的金融操作方式构建成量化交易策略,严格地按照所设定的规则,由计算机自动进行交易决策并完成交易

10、操作的交易方式。程序化交易(Program Trading),是指投资者将交易思想与交易规则模型化,构建成量化交易策略,并由计算机执行策略,实现自动判定买卖时机并下单交易的交易方式。程序化交易使得量化投资方式由人工向计算机自动化转变。利用量化投资的理论方法与数据挖掘等技术手段构建的交易模型,可以高效捕捉市场的有效信息,对市场进行不带有任何情绪的跟踪,同时产生稳定的投资收益。10程序化交易量化研究在投资中的具体运用方式: 程序化交易简介 投资者主观交易程序化交易决策判断方式感性/主观/恐惧贪婪理性/客观/数据讯号精力与时间投入高低运算速度/执行能力缓慢快速交易记录/风险警示人工手动电脑自动投资回

11、报率稳定性不稳定比较稳定程序化交易与主观交易:/SS2006082530441108_1.shtml11 程序化交易简介 程序化交易优势:规避主观情绪提高交易速度复制盈利模式降低人力成本量化交易风险12 程序化交易简介 提 纲 研发背景 量化投资简介 程序化交易简介 程序化交易发展与现状 策略开发模式的变革程序化交易策略智能生成系统 原理简介 系统功能演示 功能、性能对比 应用与发展程序化交易发展与现状国外程序化交易发展现状: 根据美国纽约证券交易所(NYSE)统计:2006年以来,NYSE市场上程序化交易量所占比例基本维持在30%左右。案例一其中最著名的是2007年5月22日这一天,5.8万

12、亿份股票集中被交易,大约占整周交易量的61%。当日进行程序化交易的前五大机构是瑞士联合银行、摩根斯坦利、雷曼兄弟、高盛和德意志银行。http:/view/2faa146da98271fe910ef9a3.html纽约证券交易所(NYSE)统计信息/press/15.html14 程序化交易发展与现状国外程序化交易发展现状:案例一纽约证券交易所(NYSE)统计信息 根据NYSE最新统计,2012年12月17日12月21日股票交易量为20.952亿股,其中44.3%是通过程序化交易方式实施的。/pdfs/PT122812(2).pdf 根据NYSE最新统计,2013年1月14日1月18日股票交易量

13、为15.36亿股,其中30.1%是通过程序化交易方式实施的。15 程序化交易发展与现状国外程序化交易发展现状: 2009年高盛的程序化交易量占NYSE交易量的50%,这个比例在2008年年底是27%. 2009年第二季度,高盛公布了创纪录的交易收入,其中有46个交易日每天利润超过1亿美元,相当于该季度交易总量的71%. 此后第三季度有36日每日交易利润超过1亿美元,并且在该季度中只有一天发生了交易亏损。案例二/view/2faa146da98271fe910ef9a3.html高盛集团(Goldman Sachs)程序化交易纪录16 程序化交易发展与现状国外程序化交易发展现状: 1988年3月

14、,大奖章基金成立,其产品基金经理是两位美国著名数学家:西蒙斯和埃克斯。大奖章基金使用了复杂的数学模型分析并执行交易,其中很多过程已经完全自动化。自1988年以来,大奖章创造了年复合收益率不低于40%的神话;即使2008年面对全球金融危机的重挫,其回报率也高达80%. 案例三/view/8679386.htm大奖章基金(Medallion Fund)17 程序化交易发展与现状国外程序化交易发展现状:案例四芝加哥商品交易所(CME)2010年部分期货合约程序化交易比例期货合约程序化交易占比(%)成交量指令信息流量微型标准普尔500指数(E-mini S&P 500)51.66%69.93%欧元外汇

15、(Euro FX)69.32%83.41%欧元(Eurodollar)51.29%64.46%10年期国债(10-Yr T-Note)49.88%68.33%原油(Crude Oil)35.34%71.24%/education/files/Algo_and_HFT_Trading_0610.pdf18 程序化交易发展与现状国外程序化交易发展现状:案例四芝加哥商品交易所(CME)2011年部分期货合约程序化交易比例期货合约程序化交易占比(%)成交量指令信息流量微型标准普尔500指数(E-mini S&P 500)47%64%欧元外汇(Euro FX)62%83%欧元(Eurodollar)44

16、%74%10年期国债(10-Yr T-Note)46%67%/education/files/Algo_and_HFT_Trading_0610.pdf19 程序化交易发展与现状国内程序化交易发展现状:起步较晚,与国外相比有很大差距。主要集中在期货市场。2012年1月至8月股指期货总成交量中,约有20%通过程序化交易实现。自动程序化交易的投资者数量占投资者总数的1%左右。借助程序化交易系统提示交易信号的投资者数量占5%10%.20 程序化交易发展与现状国内程序化交易平台: 21 程序化交易发展与现状研发背景 量化投资简介 程序化交易简介 程序化交易发展与现状 策略开发模式的变革程序化交易策略智

17、能生成系统 原理简介 系统功能演示 功能、性能对比 应用与发展策略开发模式的变革 提 纲 时间因素策略开发时间策略有效生命周期策略失效判断时间资金因素策略开发成本策略有效生命期内可能的盈利策略失效判断期内可能的损失程序化交易的技术瓶颈策略开发:23 策略开发模式的变革金融知识编程能力人力成本时间成本投资经验策略电脑交易传统策略开发流程:24 策略开发模式的变革选择交易品种构建交易思想交易思想程序化样本内检验策略优化样本外检验实盘检验策略监测与维护传统策略开发流程:25 策略开发模式的变革策略的有效生命周期与失效时间判断:一个静态的策略很难永远在动态的市场行情中盈利。激烈的市场竞争可能会使更多策

18、略的有效周期缩短。更新策略(限于新策略开发的时间和成本)或延长失效判断期本质上都会带来损失。2012.12.0426 策略开发模式的变革国外策略智能生成模式的探索:27 策略开发模式的变革传统策略开发流程:金融知识编程能力人力成本时间成本投资经验策略电脑交易28 策略开发模式的变革高效策略开发流程(智能生成模式): 策略生成 系统 投资经验策略电脑交易29 策略开发模式的变革高效策略开发流程(智能生成模式):30选择交易品种构建交易思想交易思想程序化样本内检验策略优化样本外检验实盘检验策略监测与维护 策略开发模式的变革策略智能生成模式特点:策略逻辑由机器智能构建并优化,批量得到可用于实盘交易的

19、策略执行代码,降低策略开发的技术门槛。缩短策略开发周期,降低策略开发成本。策略开发周期与成本占策略有效周期收益的比例大幅降低。策略逻辑由机器智能构建并优化,降低策略开发的技术门槛。缩短策略开发周期,降低策略开发成本。使开发周期与成本占策略有效周期收益的比例大幅降低31 策略开发模式的变革TradingSystemLab(TSL)是一家商品交易策略服务商,由大名鼎鼎的R-mesa交易系统的创始人MikeBarna所创。MikeBarna利用遗传规划方法(Genetic Programming, GP),针对不同交易标的智能生成各种程序化交易策略。从FuturesTruthMagazine的跟踪结

20、果可以看到这种模式在交易策略研发中的成功的一面。TradingSystemLab(TSL),是一家CTA(Commodity Trading Advisors,商品交易顾问)策略服务商,由大名鼎鼎的R-mesa交易系统(Futures Truth头十位的交易策略长期占据头几名)的创始人MikeBarna所创。MikeBarna利用遗传规划(Genetic Programming,GP)方法,针对不同交易标的智能生成各种交易策略,从FuturesTruthMagazine的跟踪结果可以看到遗传规划在交易策略研发中的成功的一面。国外策略智能生成模式的探索TSL:32 策略开发模式的变革在标准普尔指

21、数(S&P)上的交易系统排名Top10(以三倍保证金为初始资金):排名 交易系统名称年收益率1 TSL-SP_1.0Z75.5% 2TSL-CEL_SP152.0% 3Impetus SP49.3%4Big Blue 239.1%5STC S&P Daytrade36.1% 6FT Classic35.3%7%C DayBreaker34.5%8R-Breaker34.1%9Tzar30.2%10AlfaMAXX28.5%国外策略智能生成模式的探索TSL:初始投资金额:3倍的保证金再投资或利润分配:不计算在内佣金/滑动使用:$200/rt for ND(钕/镍-期货), $100/rt for

22、 SP(标准普尔500指数/股指期货), $25/rt for e-minis(适合个人投资的期货合约), $75 for all other markets.管理和激励收费:不计算在内/top10spsystems.htm33 策略开发模式的变革过去12个月交易系统排名Top10(截至2012/07/31,以三倍保证金为初始资金):排名 交易系统名称年收益率1Ruggerio Bond336.3%2TSL_US1217.9%3TSL_CEL_NG_1.1143.3% 4MESA Bonds138.5%5Big Dipper127.7%6XS Bonds119.9%7TSL_SP_1.0Z11

23、4.2%8Delphi II EMD105.1% 9FedSwing102.0% 10TSL_US292.4%国外策略智能生成模式的探索TSL:/top10past12months.htm34 策略开发模式的变革交易系统自发布以来排名Top10(截至2012/07/31,以三倍保证金为初始资金):排名 交易系统名称年收益率1TSL_CEL_NG_1.1168.1% 2TSL_US2102.0% 3TSL_US179.6% 4TSL_SP_1.0Z75.5% 5Delphi II EMD74.7%6Trend Finder - Tiger66.3%7NatGator 61.2% 8TSL_DX5

24、7.9% 9TSL_CEL_SP152.0%10Propero ES51.7%国外策略智能生成模式的探索TSL:/top10sincereleasedate.htm35 策略开发模式的变革国外策略智能生成模式的探索TSL:策略TSL_US2:测试周期:日线时间:2001/05/14至2011/03/16测试初始资金:$100,000总盈利:$159,000收益率:159%总盈亏比:1.63日内最大回撤:$9,906.25总交易次数:612胜率:62.75%36 策略开发模式的变革策略TSL_SP_1.0Z:测试周期:日线时间跨度:23年10月20天测试初始资金:$100,000总盈利: $1,

25、080,600收益率:1080%总盈亏比:2.69日内最大回撤:$63,775总交易次数:556胜率:70.5%国外策略智能生成模式的探索TSL:37 策略开发模式的变革研发背景 量化投资简介 程序化交易简介 程序化交易发展与现状 策略开发模式的变革程序化交易策略智能生成系统 原理简介 系统功能演示 功能、性能对比 应用与发展程序化交易策略智能生成系统 提 纲 程序化交易策略智能生成系统 程序化交易策略智能生成系统,是由山东大学金融研究院风险管理与量化投资研究所完全自主研发的,集策略智能生成、策略评估、筛选优化、报表批量生成等功能于一体的综合策略研发平台。研发背景 量化投资简介 程序化交易简介

26、 程序化交易发展与现状 策略开发模式的变革程序化交易策略智能生成系统 原理简介 系统功能演示 功能、性能对比 应用与发展原理简介 提 纲 选择策略标的设置约束条件策略群构建策略群优化打印输出策略智能生成步骤:41 原理简介策略构建原理:技术指标库的建设约束条件与自适应算法的过滤交易逻辑模块的组合策略代码格式化42 原理简介策略优化原理:构建原始策略种群策略评估与筛选策略种群繁衍优化输出优质策略种群43 原理简介研发背景 量化投资简介 程序化交易简介 程序化交易发展与现状 策略开发模式的变革程序化交易策略智能生成系统 原理简介 系统功能演示 功能、性能对比 应用与发展系统功能演示 提 纲 系统功

27、能:市场数据的导入与设置策略生成策略交易报表系统系统设置45 系统功能演示研发背景 量化投资简介 程序化交易简介 程序化交易发展与现状 策略开发模式的变革程序化交易策略智能生成系统 原理简介 系统功能演示 功能、性能对比 应用与发展功能、性能对比 提 纲 程序化交易策略智能生成系统Adaptrade Builder47 功能、性能对比 软件功能对比:市场数据,账户信息对比策略基本选项设置对比策略逻辑设置对比评估,优化设置对比报表信息对比等市场数据,账户信息对比策略基本选项设置对比策略逻辑设置对比评估,优化设置对比报表信息对比等数据与账户基本设置策略逻辑评估优化报表系统48 功能对比 市场数据,

28、账户信息对比:程序化交易策略智能生成系统Adaptrade Builder数据来源数据文件导入数据文件导入数据使用区间可截取全数据样本数据检验三段式检验两段式检验样本内外数据切换商品属性系统内置手动输入查看交易所交易品种自定义商品、交易所资金账户设置费率方式3 种1 种49 功能对比 策略基本选项设置对比:程序化交易策略智能生成系统Adaptrade Builder交易制度T+0 / T+1T+0多空头逻辑对称多空头数量确定方式3 种6 种数量变动、单笔上限限制每日交易次数限制开仓时间日内定时平仓持仓周期限制风险控制50 功能对比 策略逻辑设置对比:程序化交易策略智能生成系统Adaptrade

29、 Builder市价/限价/突破市价/限价/突破市价/止损/目标跟踪止损/佣金获利/通道市价/止损/目标跟踪止损全局参数设置/局部参数设置全局设置92个31个程序化交易策略智能生成系统Adaptrade Builder进场方式市价 / 限价 / 突破市价 / 限价 / 突破离场方式市价 / 止损 / 目标跟踪止损 / 佣金获利 / 通道市价 / 止损 / 目标跟踪止损参数设置全局参数设置 / 局部参数设置全局设置平仓反手连续建仓技术指标数量92 个31 个自定义指标51 功能对比 评估、优化功能对比:程序化交易策略智能生成系统Adaptrade Builder度量指标数量101 个84 个度量

30、指标标准化算法7 种1 种适应度算法6 种1 种选择算法6 种1 种策略复杂度可控性未达目标重生成样本内 / 样本外 / 样本内外样本外策略代码语言交易开拓者(TBL)(可扩展为用户需要的任何交易语言)TradeStation52 功能对比 报表功能对比:程序化交易策略智能生成系统Adaptrade Builder策略性能图表盈亏曲线图 / 盈亏面积图盈亏柱状图 / 交易分布图盈亏曲线图交易记录样本内 / 样本外样本内 / 样本外策略代码查看 / TXT文件导出查看 / 复制设置选项报表查看 / EXCEL文件导出无交易分析报表详细 / 查看 / EXCEL文件导出简略 / 查看策略池统计报表

31、查看 / EXCEL文件导出无策略池信息样本内 / 样本外 / 样本内外样本内 / 样本外策略存储53 功能对比 策略性能对比:以下为程序化交易策略智能生成系统和Adaptrade Builder两款软件在股指期货(IF000)、沪铜商品(cu000)上的策略性能测试结果对比。每组测试比较都是从10组策略库中挑选出一组优质策略库,然后按照样本内适应度排序,取前10名策略进行比较。最后对每组策略的各统计指标取均值进行比较。54 性能对比 测试品种:IF000测试周期:5mins测试时间:2012/07/022012/12/28 初始资金:500000元手续费:每笔交易450元交易数量:1手/笔

32、样本内比例:60% 第一组:55 性能对比 第一组(净利润):56 性能对比 第一组(盈利比例):57 性能对比 第一组(总盈亏比):58 性能对比 第一组(最大回撤):59 性能对比 测试品种:IF000测试周期:15mins测试时间:2011/11/302012/12/30 初始资金:500000元手续费:每笔交易450元交易数量:1手/笔 样本内比例:70% 第二组:60 性能对比 第二组(净利润):61 性能对比 第二组(盈利比例):62 性能对比 第二组(总盈亏比):63 性能对比 第二组(最大回撤):64 性能对比 测试品种:IF000测试周期:5mins测试时间:2010/04/

33、162012/12/30初始资金:500000元手续费:每笔交易450元交易数量:1手/笔 样本内比例:89% 第三组:65 性能对比 第三组(净利润):66 性能对比 第三组(盈利比例):67 性能对比 性能对比第三组(总盈亏比):68 性能对比 第三组(最大回撤):69 性能对比 测试品种:cu000测试周期:日线测试时间:1996/04/032013/01/11初始资金:500000元手续费:每笔交易150元交易数量:1手/笔 样本内比例:60% 第四组:70 性能对比 第四组(净利润):71 性能对比 第四组(盈利比例):72 性能对比 性能对比第四组(总盈亏比):73 性能对比 第四

34、组(最大回撤):74 性能对比 每组均值对比(净利润) :75 性能对比 每组均值对比(盈利比率) :76 性能对比 每组均值对比(总盈亏比) :77 性能对比 每组均值对比(最大回撤) :78 性能对比 美股策略性能分析:以下为【程序化交易策略智能生成系统】针对美股数据生成的策略性能测试结果。每组测试结果都是从10组策略库中挑选出一组优质策略库,然后按照样本内适应度排序,取前几名策略进行分析。79 性能对比 测试品种:美股DIS(迪士尼)测试周期:5mins测试时间:2011/06/162013/02/15初始资金:$60000.00手续费:按成交金额的2%交易数量:1手/笔 样本内比例:6

35、0% 第一组:80 性能对比 81策略00736策略编号净利润盈利比率总盈亏比交易手数最大回撤收益率年度收益率手续费总额收益曲线R20073628627.1943.57%1.62280-7352.7047.71%61.49%4822.810.93800086725484.3952.00%1.32525-7396.0539.82%55.13%8935.610.8927美股(DIS)策略分析:策略00867 性能对比 测试品种:美股MCP(Molycorp)测试周期:5mins测试时间:2011/06/162013/02/15初始资金:$90000.00手续费:按成交金额的2%交易数量:1手/笔

36、样本内比例:60% 第二组:82 性能对比 83策略01053策略编号净利润盈利比率总盈亏比交易手数最大回撤收益率年度收益率手续费总额收益曲线R201053124695.541.96% 1.451630-8753.94 146.70%112.86%17734.500.96450104096257.4447.01% 1.271740-10180.67 120.32%86.85%18862.560.961美股(MCP)策略分析:策略01040 性能对比 测试品种:美股AAPL(苹果)测试周期:5mins测试时间:2011/06/162013/02/15初始资金:$80000.00手续费:按成交金额的2%交易数量:1手/笔 样本内比例:60% 第三组:84 性能对比 85策略00115策略编号净利润盈利比率总盈亏比交易手数最大回撤收益率年度收益率手续费总额收益曲线R200115583323.1442.18%1.4084461159.0776.75%98.86%172326.860.974102997663

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论