数学建模一周_第1页
数学建模一周_第2页
数学建模一周_第3页
数学建模一周_第4页
数学建模一周_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第第一一章章 建立数学模型建立数学模型1.1 从现实对象到数学模型从现实对象到数学模型1.2 数学建模的重要意义数学建模的重要意义1.3 数学建模示例数学建模示例1.4 数学建模的方法和步骤数学建模的方法和步骤1.5 数学模型的特点和分类数学模型的特点和分类1.6 怎样学习数学建模怎样学习数学建模玩具、照片、飞机、火箭模型玩具、照片、飞机、火箭模型 实物模型实物模型水箱中的舰艇、风洞中的飞机水箱中的舰艇、风洞中的飞机 物理模型物理模型地图、电路图、分子结构图地图、电路图、分子结构图 符号模型符号模型模型模型是为了一定目的,对客观事物的一部分是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼

2、出来的进行简缩、抽象、提炼出来的原型原型的替代物的替代物模型模型集中反映了集中反映了原型原型中人们需要的那一部分特征中人们需要的那一部分特征1.1 从现实对象到数学模型从现实对象到数学模型我们常见的模型我们常见的模型你碰到过的数学模型你碰到过的数学模型“航行问题航行问题”用用 x 表示船速,表示船速,y 表示水速,列出方程:表示水速,列出方程:75050)(75030)(yxyx答:船速每小时答:船速每小时20千米千米/ /小时小时. .甲乙两地相距甲乙两地相距750千米,船从甲到乙顺水航行需千米,船从甲到乙顺水航行需30小时,小时,从乙到甲逆水航行需从乙到甲逆水航行需50小时,问船的速度是多

3、少小时,问船的速度是多少?x =20y =5求解求解航行问题航行问题建立数学模型的基本步骤建立数学模型的基本步骤 作出简化假设(船速、水速为常数);作出简化假设(船速、水速为常数); 用符号表示有关量(用符号表示有关量(x, y表示船速和水速);表示船速和水速); 用物理定律(匀速运动的距离等于速度乘以用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);时间)列出数学式子(二元一次方程); 求解得到数学解答(求解得到数学解答(x=20, y=5);); 回答原问题(船速每小时回答原问题(船速每小时20千米千米/小时)。小时)。数学模型数学模型 (Mathematical

4、 Model) 和和数学建模(数学建模(Mathematical Modeling)对于一个对于一个现实对象现实对象,为了一个,为了一个特定目的特定目的,根据其根据其内在规律内在规律,作出必要的,作出必要的简化假设简化假设,运用适当的运用适当的数学工具数学工具,得到的一个,得到的一个数学结构数学结构。建立数学模型的全过程建立数学模型的全过程(包括表述、求解、解释、检验等)(包括表述、求解、解释、检验等)数学模型数学模型数学数学建模建模1.2 数学建模的重要意义数学建模的重要意义时代特点:时代特点:2、数学以空前的广度和深度向一切领域渗透。、数学以空前的广度和深度向一切领域渗透。数学建模作为用数

5、学方法解决实际问题的第一步,数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视。越来越受到人们的重视。 在一般工程技术领域数学建模仍然大有用武之地;在一般工程技术领域数学建模仍然大有用武之地; 在高新技术领域数学建模几乎是必不可少的工具;在高新技术领域数学建模几乎是必不可少的工具; 数学进入一些新领域,为数学建模开辟了许多处女地。数学进入一些新领域,为数学建模开辟了许多处女地。1、电子计算机的出现及飞速发展、电子计算机的出现及飞速发展数学建模的具体应用数学建模的具体应用 分析与设计分析与设计 预报与决策预报与决策 控制与优化控制与优化 规划与管理规划与管理数学建模计算机技术知识经

6、济知识经济如虎添翼如虎添翼1.3.1 例例1 1 高跟鞋问题高跟鞋问题女孩子都爱美,你知道你穿鞋跟女孩子都爱美,你知道你穿鞋跟多高的鞋子看起来最美吗?多高的鞋子看起来最美吗?1.3 数学建模示例数学建模示例 穿高跟鞋是为了身高在视觉上得到增加,穿高跟鞋是为了身高在视觉上得到增加,但是身高越高看起来越美吗?但是身高越高看起来越美吗?理解问题理解问题 由黄金分割原理,我们不妨假定,当人由黄金分割原理,我们不妨假定,当人的下肢和身高的比为的下肢和身高的比为0.6180.618时,看起来时,看起来最美。最美。合理化假设合理化假设 设某人身高为设某人身高为h h厘米,下肢长厘米,下肢长l l厘米,高跟厘

7、米,高跟鞋的鞋跟为鞋的鞋跟为x x厘米。厘米。转化为数学问题转化为数学问题 穿上高跟鞋后,身高为穿上高跟鞋后,身高为h+xh+x厘米,厘米,下肢长下肢长l+xl+x厘米。厘米。618. 0 xhxl 得到一个关于得到一个关于x x的一次方程:的一次方程:问题的求解问题的求解 解该一次方程,得:解该一次方程,得:382. 0618. 0lhx问题的检验问题的检验 以身高以身高168CM168CM,下肢长为,下肢长为102CM102CM的人为例,的人为例,其所穿鞋的鞋跟高度与好看程度的关系可其所穿鞋的鞋跟高度与好看程度的关系可由下表说明:由下表说明:原比原比(l/h)身高身高(cm) 鞋跟高度鞋跟

8、高度(cm) 新比值新比值问题的检验问题的检验 又如,按照上述模型,身高又如,按照上述模型,身高153CM153CM,下肢,下肢长为长为92CM92CM的女士,应穿鞋跟高为的女士,应穿鞋跟高为6.6CM6.6CM的的高跟鞋显得比较美。高跟鞋显得比较美。评价和应用评价和应用 由此看来,女孩们爱穿高跟鞋是有科由此看来,女孩们爱穿高跟鞋是有科学依据的,也使人联想到为什么人们学依据的,也使人联想到为什么人们观看芭蕾舞的时候有一种美的感受,观看芭蕾舞的时候有一种美的感受,可当你看踩高翘表演时就没有这种感可当你看踩高翘表演时就没有这种感觉。觉。 这下女生知道应该如何选择合适的高这下女生知道应该如何选择合适

9、的高跟鞋了吧!跟鞋了吧!1.3.2 如何最省料?如何最省料?问题:现要用问题:现要用100100* *5050厘米的板料裁剪出规格为厘米的板料裁剪出规格为4040* *4040厘米与厘米与5050* *2020的零件,前者需要的零件,前者需要2525件,后者需要件,后者需要3030件,件,问如何裁剪才能最省料?问如何裁剪才能最省料?解:先设计几个裁剪方案,如图在解:先设计几个裁剪方案,如图在100100* *5050的板料上的板料上可裁剪出两块可裁剪出两块4040* *4040厘米的零件盒一块厘米的零件盒一块5050* *2020厘米的厘米的零件(图中分别用零件(图中分别用A,B,CA,B,C

10、表示),或一块表示),或一块4040* *4040厘米厘米的零件盒三块的零件盒三块5050* *2020厘米的零件,或五块厘米的零件,或五块5050* *2020厘米厘米的零件。的零件。显然,若只用其中一个方案,都不是最省料的方法,显然,若只用其中一个方案,都不是最省料的方法,最佳方法应该是三个方案的优化组合。设方案最佳方法应该是三个方案的优化组合。设方案i i使用使用原材料(原材料(Xi=1,2,3Xi=1,2,3),共用原材料),共用原材料f f件,则根据题意,件,则根据题意,可用如下数学式子表示:可用如下数学式子表示:背景背景 年年 1625 1830 1930 1960 1974 19

11、87 1999人口人口(亿亿) 5 10 20 30 40 50 60世界人口增长概况世界人口增长概况中国人口增长概况中国人口增长概况 年年 1908 1933 1953 1964 1982 1990 1995 2000人口人口(亿亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0研究人口变化规律研究人口变化规律控制人口过快增长控制人口过快增长1.3.3 如何预报人口的增长如何预报人口的增长指数增长模型指数增长模型马尔萨斯提出马尔萨斯提出 ( (1798) )常用的计算公式常用的计算公式kkrxx)1 (0 x(t) 时刻时刻t的的人口人口基本假设基本假设 : 人口人

12、口(相对相对)增长率增长率 r 是常数是常数trtxtxttx)()()(今年人口今年人口 x0, 年增长率年增长率 rk年后人口年后人口0)0(,xxrxdtdxrtextx0)(trextx)()(0trx)1 (0随着时间增加,人口按指数规律无限增长随着时间增加,人口按指数规律无限增长指数增长模型的应用及局限性指数增长模型的应用及局限性 与与19世纪以前欧洲一些地区人口统计数据吻合世纪以前欧洲一些地区人口统计数据吻合 适用于适用于19世纪后迁往加拿大的欧洲移民后代世纪后迁往加拿大的欧洲移民后代 可用于短期人口增长预测可用于短期人口增长预测 不符合不符合19世纪后多数地区人口增长规律世纪后

13、多数地区人口增长规律 不能预测较长期的人口增长过程不能预测较长期的人口增长过程1919世纪后人口数据世纪后人口数据人口增长率人口增长率r r不是常数不是常数( (逐渐下降逐渐下降) )阻滞增长模型阻滞增长模型( (Logistic模型模型) )人口增长到一定数量后,增长率下降的原因:人口增长到一定数量后,增长率下降的原因:资源、环境等因素对人口增长的阻滞作用资源、环境等因素对人口增长的阻滞作用且阻滞作用随人口数量增加而变大且阻滞作用随人口数量增加而变大假设假设) 0,()(srsxrxrr固有增长率固有增长率(x很小时很小时)xm人口容量(资源、环境能容纳的最大数量)人口容量(资源、环境能容纳

14、的最大数量))1 ()(mxxrxrr是是x的减函数的减函数mxrs 0)(mxrrxdtdx)1 ()(mxxrxxxrdtdxdx/dtx0 xmxm/2xmx txxxemmrt( )()110tx0 x(t)S形曲线形曲线, x增加先快后慢增加先快后慢x0 xm/2阻滞增长模型阻滞增长模型( (Logistic模型模型) )参数估计参数估计用指数增长模型或阻滞增长模型作人口用指数增长模型或阻滞增长模型作人口预报,必须先估计模型参数预报,必须先估计模型参数 r 或或 r, xm 利用统计数据用最小二乘法作拟合利用统计数据用最小二乘法作拟合例:美国人口数据(单位例:美国人口数据(单位百万)

15、百万) 1860 1870 1880 1960 1970 1980 1990 31.4 38.6 50.2 179.3 204.0 226.5 251.4专家估计专家估计阻滞增长模型阻滞增长模型( (Logistic模型模型) )r=0.2557, xm=392.1模型检验模型检验用模型计算用模型计算2000年美国人口,与实际数据比较年美国人口,与实际数据比较/ )1990(1)1990()1990()1990()2000(mxxrxxxxx实际为实际为281.4 (百万百万)5 .274)2000(x模型应用模型应用预报美国预报美国2010年的人口年的人口加入加入2000年人口数据后重新估计

16、模型参数年人口数据后重新估计模型参数Logistic 模型在经济领域中的应用模型在经济领域中的应用( (如耐用消费品的售量如耐用消费品的售量) )阻滞增长模型阻滞增长模型( (Logistic模型模型) )r=0.2490, xm=434.0 x(2010)=306.01.3.4崖高的估算崖高的估算假如你站在崖顶且身上带着一只具有跑表功假如你站在崖顶且身上带着一只具有跑表功 能的计算器,你也许会出于好奇心想用扔下能的计算器,你也许会出于好奇心想用扔下 一块石头听回声的方法来估计山崖的高度,一块石头听回声的方法来估计山崖的高度, 假定你能准确地测定时间,你又怎样来推算假定你能准确地测定时间,你又

17、怎样来推算 山崖的高度呢,请你分析一下这一问题。山崖的高度呢,请你分析一下这一问题。我有一只具有跑我有一只具有跑 表功能的计算器。表功能的计算器。方法一方法一假定空气阻力不计,可以直接利用自由落体运动的公式假定空气阻力不计,可以直接利用自由落体运动的公式来计算。例如,来计算。例如, 设设t=4秒,秒,g=9.81米米/秒秒2,则可求得,则可求得h78.5米。米。221gth 我学过微积分,我可以做我学过微积分,我可以做 得更好,呵呵。得更好,呵呵。 vKmgdtdvmF除去地球吸引力外,对石块下落影响最大的当除去地球吸引力外,对石块下落影响最大的当 属属空气阻空气阻力力。根据流体力学知识,此时

18、可设空气阻力正比于石块下。根据流体力学知识,此时可设空气阻力正比于石块下落的速度,阻力系落的速度,阻力系 数数K为常数,因而,由牛顿第二定律可为常数,因而,由牛顿第二定律可得:得: kgcevkt令令k=K/m,解得解得 代入初始条件代入初始条件 v(0)=0,得,得c=g/k,故有,故有 ktekgkgv再积分一次,得:再积分一次,得: cekgtkghkt2若设若设k=0.05并仍设并仍设 t=4秒,则可求秒,则可求 得得h73.6米。米。 听到回声再按跑表,计算得到的时间中包含了听到回声再按跑表,计算得到的时间中包含了 反应时间反应时间 不妨设不妨设平均反应时间平均反应时间 为为0.1秒

19、秒 ,假如仍,假如仍 设设t=4秒,扣除反秒,扣除反应时间后应应时间后应 为为3.9秒,代入秒,代入 式式,求得,求得h69.9米。米。 222)1(kgektkgkgekgtkghktkt多测几次,取平均多测几次,取平均值值代入初始条代入初始条 件件h(0)=0,得到计算山崖高度的公式:,得到计算山崖高度的公式: 将将e-kt用泰勒公式展开并用泰勒公式展开并 令令k 0+ ,即可,即可得出前面不考虑空气阻力时的结果。得出前面不考虑空气阻力时的结果。还应考虑还应考虑回声回声传回来所需要的时间。为此,令石块下落传回来所需要的时间。为此,令石块下落 的真正时间的真正时间 为为t1,声音传回来的时间

20、记,声音传回来的时间记 为为t2,还得解一个,还得解一个方程组:方程组: 933401212211.ttthkg)ekt (kghkt这一方程组是这一方程组是非线性非线性的,求的,求解不太容易,解不太容易,为了估算崖高为了估算崖高竟要去解一个竟要去解一个非线性主程组非线性主程组似乎不合情理似乎不合情理 相对于石块速度,声音速度要快得多,我们可相对于石块速度,声音速度要快得多,我们可 用方法二先求一次用方法二先求一次 h,令,令t2=h/340,校正,校正t,求石,求石块下落时间块下落时间 t1t-t2将将t1代入式代入式再算一次,得出再算一次,得出崖高的近似值。例如,崖高的近似值。例如, 若若

21、h=69.9米,则米,则 t20.21秒,故秒,故 t13.69秒,求得秒,求得 h62.3米。米。 数学建模的基本方法数学建模的基本方法机理分析机理分析测试分析测试分析根据对客观事物特性的认识,根据对客观事物特性的认识,找出反映内部机理的数量规律找出反映内部机理的数量规律将对象看作将对象看作“黑箱黑箱”,通过对量测数据的通过对量测数据的统计分析,找出与数据拟合最好的模型统计分析,找出与数据拟合最好的模型机理分析没有统一的方法,主要通过实例研究机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析。来学习。以下建模主要指机理分析。二者结合二者结合用

22、机理分析建立模型结构用机理分析建立模型结构,用测试分析确定模型参数用测试分析确定模型参数1.4 数学建模的方法和步骤数学建模的方法和步骤 数学建模的一般步骤数学建模的一般步骤模型准备模型准备模型假设模型假设模型构成模型构成模型求解模型求解模型分析模型分析模型检验模型检验模型应用模型应用模模型型准准备备了解实际背景了解实际背景明确建模目的明确建模目的搜集有关信息搜集有关信息掌握对象特征掌握对象特征形成一个形成一个比较清晰比较清晰的的问题问题模模型型假假设设针对问题特点和建模目的针对问题特点和建模目的作出合理的、简化的假设作出合理的、简化的假设在合理与简化之间作出折中在合理与简化之间作出折中模模型

23、型构构成成用数学的语言、符号描述问题用数学的语言、符号描述问题发挥想像力发挥想像力使用类比法使用类比法尽量采用简单的数学工具尽量采用简单的数学工具 数学建模的一般步骤数学建模的一般步骤模型模型求解求解各种数学方法、软件和计算机技术各种数学方法、软件和计算机技术如结果的误差分析、统计分析、如结果的误差分析、统计分析、模型对数据的稳定性分析模型对数据的稳定性分析模型模型分析分析模型模型检验检验与实际现象、数据比较,与实际现象、数据比较,检验模型的合理性、适用性检验模型的合理性、适用性模型应用模型应用 数学建模的一般步骤数学建模的一般步骤数学建模的全过程数学建模的全过程现实对象的信息现实对象的信息数

24、学模型数学模型现实对象的解答现实对象的解答数学模型的解答数学模型的解答表述表述求解求解解释解释验证验证(归纳)(演绎)表述表述求解求解解释解释验证验证根据建模目的和信息将实际问题根据建模目的和信息将实际问题“翻译翻译”成数学问成数学问题题选择适当的数学方法求得数学模型的解答选择适当的数学方法求得数学模型的解答将数学语言表述的解答将数学语言表述的解答“翻译翻译”回实际对象回实际对象用现实对象的信息检验得到的解答用现实对象的信息检验得到的解答实践现现实实世世界界数数学学世世界界理论实践1.5 数学模型的特点和分类数学模型的特点和分类模型的逼真性和可行性模型的逼真性和可行性模型的渐进性模型的渐进性模

25、型的强健性模型的强健性模型的可转移性模型的可转移性模型的非预制性模型的非预制性模型的条理性模型的条理性模型的技艺性模型的技艺性模型的局限性模型的局限性 数学模型的特点数学模型的特点数学模型的分类数学模型的分类应用领域应用领域人口、交通、经济、生态人口、交通、经济、生态 数学方法数学方法初等数学、微分方程、规划、统计初等数学、微分方程、规划、统计 表现特性表现特性描述、优化、预报、决策描述、优化、预报、决策 建模目的建模目的了解程度了解程度白箱白箱灰箱灰箱黑箱黑箱确定和随机确定和随机静态和动态静态和动态线性和非线性线性和非线性离散和连续离散和连续1.6 怎样学习数学建模怎样学习数学建模数学建模与其说是一门技术,不如说是一门艺术数学建模与其说是一门技术,不如说是一门艺术技术大致有章可循技术大致有章可循艺术无法归纳成普遍适用的准则艺术无法归纳成普遍适用的准则想像力想像力洞察力洞察力判断力判断力 学习、分析、评价、改进别人作过的模

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论