




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上 北师大版数学七年级【下册】 第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是 一个单项或多项式;指数是1时,不要误以为没有指数;不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);公式还可以逆用:(m、n均为正整数)二幂的乘方与积的乘方1. 幂的
2、乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. .3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a34底数有时形式不同,但可以化成相同。 5要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。 6积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n 为正整数)。7幂的乘方与积乘方法则均可逆向运用。三. 同底数幂的除法1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a0,m、n都是正数, 且mn).2. 在
3、应用时需要注意以下几点:法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0.任何不等于0的数的0次幂等于1,即,如,=1),则00无意义.任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a0,p是正整数), 而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的; 当a0时,a-p的值可能是正也可能是负的,如,运算要注意运算顺序. 四. 整式的乘法1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。单项式乘法法则在运用时要注意以下几点:积的系数等于各因式系数积,先确定
4、符号,再计算绝对值。这时容易出现的错误的是,将系数相乘 与指数相加混淆; 相同字母相乘,运用同底数的乘法法则; 只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; 单项式乘法法则对于三个以上的单项式相乘同样适用; 单项式乘以单项式,结果仍是一个单项式。2单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;运算时要注意积的符号,多项式的每一项都包括它前面的符号;在混合运算时,要注意
5、运算顺序。3多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。多项式与多项式相乘时要注意以下几点:多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多 项式项数的积;多项式相乘的结果应注意合并同类项; 对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到五平方差公式1平方差公式:两数和与这两数差的积,等于它们的平方差,即。其结构特征是:公式左边是
6、两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;公式右边是两项的平方差,即相同项的平方与相反项的平方之差。六完全平方公式1 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍, 即;口决:首平方,尾平方,2倍乘积在中央;2结构特征:公式左边是二项式的完全平方;公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。3在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。七整式的除法1单项式除法单项式 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;2多项
7、式除以单项式 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。【典例讲解】(一)填空题(每小题2分,共计20分)1x10(x3)2_x12x() 24(mn)3(nm)2_ 3 x2(x)3(x)2_ 4 (2ab)()b24a2 5 (ab)2(ab)2_ 6 ()2p0_;4101_ 72019()()_ 8用科学记数法表示_ 9(x2y1)(x2y1)2( )2( )2_ 10 若(x5)(x7)x2mxn,则m_,n_ (二)选择题(每小题2分,共计16分)1
8、1下列计算中正确的是() (A)ana2a2n (B)(a3)2a5 (C)x4x3xx7 (D)a2n3a3na3n612x2m1可写作() (A)(x2)m1 (B)(xm)21 (C)xx2m (D)(xm)m1 13下列运算正确的是()(A)(2ab)(3ab)354a4b4(B)5x2(3x3)215x12(C)()(10b2)3b7(D)(210n)(10n)102n 14化简(anbm)n,结果正确的是()(A)a2nbmn (B) (C) (D) 15若ab,下列各式中不能成立的是()(A)(ab)2(ab)2 (B)(ab)(ab)(ba)(ba)(C)(ab)2n(ba)2
9、n (D)(ab)3(ba)3 16下列各组数中,互为相反数的是()(A)(2)3与23 (B)(2)2与22 (C)33与()3 (D)(3)3与()3 17下列各式中正确的是()(A)(a4)(a4)a24 (B)(5x1)(15x)25x21(C)(3x2)2412x9x2 (D)(x3)(x9)x227 18如果x2kxab(xa)(xb),则k应为()(A)ab (B)ab (C)ba (D)ab (三)计算(每题4分,共24分)19(1)(3xy2)3(x3y)2; (2)4a2x2(a4x3y3)(a5xy2);(3) (2a3b)2(2a3b)2; (4)(2x5y)(2x5y)(4x225y2); (5) (20an2bn14an1bn18a2nb)(2an3b);(6) (x3)(2x1)3(2x1)220用简便方法计算:(每小题3分,共9分) (1)982; (2)8999011; (3)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年团建活动方案
- 2025年教学副校长工作方案
- 保险销售方案2025年个人范例
- 安徽省巢湖第四中学2024-2025学年初三下学期第一次验收考试-化学试题试卷含解析
- 贵州理工学院《中外书籍形态设计》2023-2024学年第二学期期末试卷
- 毕节医学高等专科学校《西班牙语语音训练营》2023-2024学年第一学期期末试卷
- 辽宁省鞍山市岫岩满族自治县2025年三年级数学第二学期期末检测模拟试题含解析
- 2025年北京市房山区名校全国初三大联考物理试题含解析
- 北京海淀区2025届初三下学期期中考试英语试题理试题(实验班)含答案
- 大连东软信息学院《化工文献检索与阅读》2023-2024学年第二学期期末试卷
- 大型风电场智能运维方案
- LMX2594实现跳频的编程时序分析
- 巨幼细胞贫血诊疗规范2022版
- 领导力与企业文化、企业管理之辩证关系-以泰州港务集团为案例的研究的开题报告
- 网络协议逆向工程技术
- 沥青路面损坏调查表(带公式自动计算)
- 影视鉴赏之《当幸福来敲门》
- 校园超市投标书1
- 施工企业数字化转型实施方案
- 审计资料交接清单
- 介绍辽宁丹东的PPT模板
评论
0/150
提交评论