




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第第1515章章 ArcGISArcGIS地统计分析地统计分析地统计分析方法是空间统计学的一个重要分支,被广泛地统计分析方法是空间统计学的一个重要分支,被广泛应用于许多领域。应用于许多领域。ArcGIS地统计分析功能是借助于地统计分析功能是借助于ArcGIS地地统计分析模块(统计分析模块(ArcGIS Geostatistical Analyst)来实现的。)来实现的。ArcGIS地统计分析模块使得复杂的地统计方法可以在软件中地统计分析模块使得复杂的地统计方法可以在软件中轻易实现。本章主要通过对地统计分析的概念介绍,逐步引轻易实现。本章主要通过对地统计分析的概念介绍,逐步引导读者在导读者在AR
2、CGIS中,如何应用地统计分析解决实际问题。中,如何应用地统计分析解决实际问题。15.1 ArcGIS15.1 ArcGIS地统计分析概述地统计分析概述很长时间以来,地统计分析一直没能很好的和很长时间以来,地统计分析一直没能很好的和GIS分析分析模型紧密地结合在一起,而模型紧密地结合在一起,而ArcGIS地统计分析模块则在地地统计分析模块则在地统计学与统计学与GIS之间架起了一座桥梁。之间架起了一座桥梁。15.1.1 ArcGIS15.1.1 ArcGIS地统计分析模块介绍地统计分析模块介绍ArcGIS地统计分析模块(地统计分析模块(ArcGIS Geostatistical Analyst)
3、是一个完整的工具包,它带有为默认模型设计的)是一个完整的工具包,它带有为默认模型设计的稳定性参数。这样可以帮助初学者快速的掌握地统计分析。稳定性参数。这样可以帮助初学者快速的掌握地统计分析。15.1.2 15.1.2 地统计分析基础简介地统计分析基础简介地统计(地统计(Geostatistics)又称地质统计,也可以称为空)又称地质统计,也可以称为空间统计分析,其是统计学的一个分支。地统计于间统计分析,其是统计学的一个分支。地统计于20世纪世纪50年年代初开始形成,代初开始形成,60年代在法国著名统计学家年代在法国著名统计学家G. MatheronG. Matheron的的大量理论研究工作基础
4、上,形成一门新的统计学分支。大量理论研究工作基础上,形成一门新的统计学分支。地统计学是以区域化变量理论(地统计学是以区域化变量理论(theory of regionalized variable)为基础,以变异函数()为基础,以变异函数(variogram)为基本工具来)为基本工具来研究分布于空间,并呈现出一定的随机性和结构性的自然现研究分布于空间,并呈现出一定的随机性和结构性的自然现象的科学。象的科学。15.2 15.2 探索性数据分析工具探索性数据分析工具探索性数据分析可以让用户更清楚地了解所用的探索探索性数据分析可以让用户更清楚地了解所用的探索性数据,包括数据的属性、分布以及空间数据的变
5、异性和相性数据,包括数据的属性、分布以及空间数据的变异性和相关性,并以此来分析数据的变化趋势,从而利用已知的数据关性,并以此来分析数据的变化趋势,从而利用已知的数据来推测拟合未知的数据。探索性数据分析也可以让用户更深来推测拟合未知的数据。探索性数据分析也可以让用户更深入地认识研究对象,从而对与其数据相关的问题做出更好的入地认识研究对象,从而对与其数据相关的问题做出更好的分析与决策。分析与决策。探索性数据分析需要借助于探索性数据分析需要借助于ArcGIS的探索性数据分析的探索性数据分析工具。工具。15.2.1 15.2.1 添加探索性数据分析工具添加探索性数据分析工具通常,通常,ArcGIS的探
6、索性数据分析模块并没有打开,在的探索性数据分析模块并没有打开,在默认界面上没有探索性数据分析工具,需要手动添加。添加默认界面上没有探索性数据分析工具,需要手动添加。添加方法如下。方法如下。(1)开启地统计分析扩展模块:单击)开启地统计分析扩展模块:单击ArcMAP界面上界面上 “工具工具” “扩展扩展”命令,弹出命令,弹出“扩展扩展”对话框,确保对话框,确保Geostatistical Analyst的复选框被选中。的复选框被选中。(2 2)添加)添加Geostatistical Analyst工具条。选择工具条。选择ArcMAP界面上的界面上的“视图视图”菜单菜单 “工具条工具条”命令,确保
7、命令,确保Geostatistical Analyst工具条被选中。之后,在工具条被选中。之后,在ArcMAP工具工具栏将出现栏将出现Geostatistical Analyst工具条。工具条。15.2.2 Histogram15.2.2 Histogram(直方图)(直方图)Histogram(直方图)指对采样数据按一定的分级方案(直方图)指对采样数据按一定的分级方案进行分级,统计采样点落入各个级别中的个数或占总采样数进行分级,统计采样点落入各个级别中的个数或占总采样数的百分比,并通过条带图或柱状图表现出来。直方图可以直的百分比,并通过条带图或柱状图表现出来。直方图可以直观的反映采样数据分布
8、特征与规律。观的反映采样数据分布特征与规律。15.2.3 15.2.3 正态正态QQPlotQQPlot分布图)和普通分布图)和普通QQPlotQQPlot分分布图布图QQPlot分布图是分布图是可以将现有数据的分布与标准正态分可以将现有数据的分布与标准正态分布对比,从而来分析和评价现有数据。其是利用分布的分位布对比,从而来分析和评价现有数据。其是利用分布的分位数而作出的图形,如果数据图形越接近一条直线,则它越接数而作出的图形,如果数据图形越接近一条直线,则它越接近于服从正态分布。近于服从正态分布。1Normal QQPlot分布图(正态分布图(正态QQPlot分布图分布图)2General
9、QQPlot分布图(普通分布图(普通QQPlot分布图)分布图)15.2.4 Trend Analysis15.2.4 Trend Analysis(趋势分析)(趋势分析)趋势分析可以利用样点数据生成以数据某一属性值为趋势分析可以利用样点数据生成以数据某一属性值为高度的三维透视图,从而帮助用户从不同视角分析采样数据高度的三维透视图,从而帮助用户从不同视角分析采样数据集的全局趋势。集的全局趋势。样点的位置由样点的位置由X、Y和和Z3个值来决定。个值来决定。X、Y确定样点确定样点平面坐标,平面坐标,Z值则是样点数据的某一属性值。三维透视图中值则是样点数据的某一属性值。三维透视图中的每个黑线就代表了
10、样点的位置和高度,位置就是样点的每个黑线就代表了样点的位置和高度,位置就是样点X、Y平面坐标,高度即样点数据的某一属性值的大小。平面坐标,高度即样点数据的某一属性值的大小。15.2.5 Voronoi Map15.2.5 Voronoi Map(VoronoiVoronoi地图)地图)Voronoi地图是由样点以及样点周围的一系列多边形所地图是由样点以及样点周围的一系列多边形所组成。多边形生成的要求就是多边形内任何位置距这一样点组成。多边形生成的要求就是多边形内任何位置距这一样点的距离都,比该多边形到其他样点的距离要近。的距离都,比该多边形到其他样点的距离要近。Voronoi 多多边形生成之后
11、,相邻的点就被定义为其边形生成之后,相邻的点就被定义为其Voronoi多边形,与多边形,与选择样点的选择样点的Voronoi多边形具有公共边的其他样点。多边形具有公共边的其他样点。 15.2.6 Semivariogram/Covariance Cloud15.2.6 Semivariogram/Covariance Cloud(半(半变异变异/ /协方差函数云)协方差函数云)半变异协方差函数云表示的是数据集中所有样点对半变异协方差函数云表示的是数据集中所有样点对的理论半变异值和协方差,并把它们用两点间距离的函数来的理论半变异值和协方差,并把它们用两点间距离的函数来表示,用此函数作图来表示。表
12、示,用此函数作图来表示。 15.2.7 Crosscovariance Cloud15.2.7 Crosscovariance Cloud(正交协方差(正交协方差函数云)函数云)正交协方差函数云表示的是两个数据集中所有样点对正交协方差函数云表示的是两个数据集中所有样点对的理论正交协方差,并把它们用两点间距离的函数来表示。的理论正交协方差,并把它们用两点间距离的函数来表示。15.3 15.3 探索性数据分析探索性数据分析对于一组模式未知的数据,可以有很多方法来处理,当数对于一组模式未知的数据,可以有很多方法来处理,当数据偏离严格假定所描述的理想模型,古典统计技术可能不适用。据偏离严格假定所描述的
13、理想模型,古典统计技术可能不适用。探索性数据分析技术探索性数据分析技术新开发的稳健、高效的数据分析方法,新开发的稳健、高效的数据分析方法,可以让用户更全面地了解自己使用的数据。可以借助其来查看数可以让用户更全面地了解自己使用的数据。可以借助其来查看数据是否服从正态分布,是否存在某种趋势效应、各向异性等。据是否服从正态分布,是否存在某种趋势效应、各向异性等。探索性数据分析主要利用探索性数据分析主要利用ArcGIS 提供的工具和插值方法,提供的工具和插值方法,可以确定统计数据属性,探测数据分布、全局和局部异常值、寻可以确定统计数据属性,探测数据分布、全局和局部异常值、寻求全局的变化趋势、研究空间自
14、相关和理解多种数据集之间相关求全局的变化趋势、研究空间自相关和理解多种数据集之间相关性。性。15.3.1 15.3.1 检验数据分布检验数据分布在地统计分析中,克里格方法建立在一定的假设基础上,在地统计分析中,克里格方法建立在一定的假设基础上,其在一定程度上要求所有数据值具有相同的变异性。另外,普其在一定程度上要求所有数据值具有相同的变异性。另外,普通克里格法、简单克里格法和泛克里格法等都假设数据服从正通克里格法、简单克里格法和泛克里格法等都假设数据服从正态分布。如果数据不服从正态分布,需要进行一定的数据变换态分布。如果数据不服从正态分布,需要进行一定的数据变换,从而使其服从正态分布。因此,在
15、进行地统计分析前,检验,从而使其服从正态分布。因此,在进行地统计分析前,检验数据分布特征,了解和认识数据具有非常重要的意义。数据的数据分布特征,了解和认识数据具有非常重要的意义。数据的检验可以通过直方图和正态检验可以通过直方图和正态QQPlot分布图完成。分布图完成。 1通过直方图检验数据分布通过直方图检验数据分布2通过通过QQplot图检验数据分布图检验数据分布15.3.2 15.3.2 寻找数据离群值寻找数据离群值在一组平行测定数据中,有时会出现个别值与其他值相在一组平行测定数据中,有时会出现个别值与其他值相差较远,这种值叫离群值。差较远,这种值叫离群值。数据离群值分为全局离群值和局数据离
16、群值分为全局离群值和局部离群值两大类。全局离群值是指对于数据集中所有点来讲部离群值两大类。全局离群值是指对于数据集中所有点来讲,具有很高或很低的值的观测样点。局部离群值对于整个数,具有很高或很低的值的观测样点。局部离群值对于整个数据集来讲,观测样点的值处于正常范围,但与其相邻测量点据集来讲,观测样点的值处于正常范围,但与其相邻测量点比较,它又偏高或偏低。比较,它又偏高或偏低。 1利用直方图查找离群值利用直方图查找离群值2利用半变异利用半变异/协方差函数云识别离群值协方差函数云识别离群值3利用利用Voronoi图查找局部离群值图查找局部离群值15.3.3 15.3.3 全局趋势分析全局趋势分析全
17、局趋势分析可以通过全局趋势分析可以通过Trend Analysis(趋势分析趋势分析)工具工具来实现。地物的空间趋势反映了空间物体在空间区域上变化来实现。地物的空间趋势反映了空间物体在空间区域上变化的主体特征。的主体特征。趋势面分析主要依靠空间样点数据,通过数学的方法来趋势面分析主要依靠空间样点数据,通过数学的方法来拟合一个空间曲面,从而大致反映其空间分布的变化情况。拟合一个空间曲面,从而大致反映其空间分布的变化情况。值得注意的是一个表面主要是由确定的全局趋势和随机的变值得注意的是一个表面主要是由确定的全局趋势和随机的变异误差来共同确定的。而趋势面分析则会忽略这种局部的变异误差来共同确定的。而
18、趋势面分析则会忽略这种局部的变异,只揭示其空间物体变化的总体规律。异,只揭示其空间物体变化的总体规律。15.3.4 15.3.4 空间自相关及方向变异空间自相关及方向变异地理空间自相关是指时间序列相邻数值间的相关关系。地理空间自相关是指时间序列相邻数值间的相关关系。大部分的地理现象都具有空间相关特性,即距离越近的两事大部分的地理现象都具有空间相关特性,即距离越近的两事物越相似。地理研究对象普遍存在的变量间的关系中,确定物越相似。地理研究对象普遍存在的变量间的关系中,确定性的是函数关系,非确定性的是相关关系。如果存在空间自性的是函数关系,非确定性的是相关关系。如果存在空间自相关,那么该变量本身存
19、在某种数学模型。半变异相关,那么该变量本身存在某种数学模型。半变异/协方差函协方差函数云图就是这种关系的定量化表示。数云图就是这种关系的定量化表示。15.3.5 15.3.5 多数据集协变分析多数据集协变分析世界上的事物不会孤立存在,它们都是处于广泛联系世界上的事物不会孤立存在,它们都是处于广泛联系之中的,并相互制约和相互影响。协变分析主要通过分析多之中的,并相互制约和相互影响。协变分析主要通过分析多因素(数据集)关联特征,在地统计空间分析中可以有效利因素(数据集)关联特征,在地统计空间分析中可以有效利用这种相关特征增强建模效果,如协同克里格插值分析。用这种相关特征增强建模效果,如协同克里格插
20、值分析。15.4 15.4 空间确定性插值空间确定性插值对采样数据进行分析,并对采样区地理特征认识之后,对采样数据进行分析,并对采样区地理特征认识之后,便要选择合适的空间内插方法来创建表面。插值方法按其实便要选择合适的空间内插方法来创建表面。插值方法按其实现的数学原理可以分为两类,一类是确定性插值方法;另一现的数学原理可以分为两类,一类是确定性插值方法;另一类是地统计插值,也就是克里格插值。类是地统计插值,也就是克里格插值。确定性插值方法以研究区域内部的相似性(如反距离加确定性插值方法以研究区域内部的相似性(如反距离加权插值法)、或者以平滑度为基础(如径向基函数插值法)权插值法)、或者以平滑度
21、为基础(如径向基函数插值法)由已知样点来创建表面。由已知样点来创建表面。确定性插值方法又可以分为两种,即全局性插值方法和确定性插值方法又可以分为两种,即全局性插值方法和局部性插值方法。全局性插值方法以整个研究区的样点数据局部性插值方法。全局性插值方法以整个研究区的样点数据集为基础来计算预测值,局部性插值方法则使用一个大研究集为基础来计算预测值,局部性插值方法则使用一个大研究区域内较小的空间区域内的已知样点来计算预测值。区域内较小的空间区域内的已知样点来计算预测值。 15.4.1 15.4.1 反距离加权插值反距离加权插值反距离加权插值法的基本原理在于,一般来讲物体离得反距离加权插值法的基本原理
22、在于,一般来讲物体离得近,它们的性质就越相似。反之,离得越远则相似性越小。近,它们的性质就越相似。反之,离得越远则相似性越小。反距离加权插值法以插值点,与样本点间的距离为权重进行反距离加权插值法以插值点,与样本点间的距离为权重进行加权平均,离插值点越近的样本点赋予的权重越大。加权平均,离插值点越近的样本点赋予的权重越大。15.4.2 15.4.2 全局多项式插值全局多项式插值全局性插值方法以整个研究区的样点数据集为基础,用一个全局性插值方法以整个研究区的样点数据集为基础,用一个数学多项式来模拟计算预测值。其可以视为用一个多项式平面或数学多项式来模拟计算预测值。其可以视为用一个多项式平面或曲面来
23、全区域的拟合。此方法拟合的表面很少能与已知样点完全曲面来全区域的拟合。此方法拟合的表面很少能与已知样点完全重合,所以全局插值法是非精确的插值法。重合,所以全局插值法是非精确的插值法。利用全局性插值法生成的表面容易受极高和极低样点值的影利用全局性插值法生成的表面容易受极高和极低样点值的影响,尤其在研究区边沿地带,因此用于模拟的有关属性在研究区响,尤其在研究区边沿地带,因此用于模拟的有关属性在研究区域内最好是变化平缓的。全局多项式插值法适用的情况如下。域内最好是变化平缓的。全局多项式插值法适用的情况如下。当一个研究区域的表面变化缓慢,即这个表面上的样点值由当一个研究区域的表面变化缓慢,即这个表面上
24、的样点值由一个区域向另一个区域的变化平缓时,可以采用全局多项式插值一个区域向另一个区域的变化平缓时,可以采用全局多项式插值法利用该研究区域内的样点对该研究区进行表面插值。法利用该研究区域内的样点对该研究区进行表面插值。检验长期变化的、全局性趋势的影响时,一般采用全局多项检验长期变化的、全局性趋势的影响时,一般采用全局多项式插值法,在这种情况下,应用的方法通常被称为趋势面分析。式插值法,在这种情况下,应用的方法通常被称为趋势面分析。 15.4.3 15.4.3 局部多项式插值局部多项式插值局部多项式插值采用多个多项式,每个多项式都处在局部多项式插值采用多个多项式,每个多项式都处在特定重叠的邻近区
25、域内。通过使用搜索邻近区域对话框可以特定重叠的邻近区域内。通过使用搜索邻近区域对话框可以定义搜索的邻近区域。局部多项式插值法不是一个精确的插定义搜索的邻近区域。局部多项式插值法不是一个精确的插值方法,但它能得到一个平滑的表面。建立平滑表面和确定值方法,但它能得到一个平滑的表面。建立平滑表面和确定变量的小范围的变异可以使用局部多项式插值法,特别是数变量的小范围的变异可以使用局部多项式插值法,特别是数据集中含有短程变异时,局部多项式插值法生成的表面就能据集中含有短程变异时,局部多项式插值法生成的表面就能描述这种短程变异。描述这种短程变异。 15.4.4 15.4.4 径向基函数插值径向基函数插值径
26、向基函数插值法适用于对大量点数据进行插值计算,径向基函数插值法适用于对大量点数据进行插值计算,同时要求获得平滑表面的情况。将径向基函数应用于表面变同时要求获得平滑表面的情况。将径向基函数应用于表面变化平缓的表面,如表面上平缓的点高程插值,能得到令人满化平缓的表面,如表面上平缓的点高程插值,能得到令人满意的结果。而在一段较短的水平距离内,表面值发生较大的意的结果。而在一段较短的水平距离内,表面值发生较大的变化,或无法确定采样点数据的准确性,或采样点数据具有变化,或无法确定采样点数据的准确性,或采样点数据具有很大的不确定性时,径向基函数插值的方法并不适用。很大的不确定性时,径向基函数插值的方法并不
27、适用。 15.5 15.5 地统计插值地统计插值地统计插值,也就是克里格插值。克里格方法(地统计插值,也就是克里格插值。克里格方法(Kriging)又称空间局部插值法,是以变异函数理论和结构)又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一。的一种方法,是地统计学的主要内容之一。15.5.1 15.5.1 克里格插值基础克里格插值基础克里格方法与反距离权插值方法类似的是,两者都通克里格方法与反距离权插值方法类似的是,两者都通过对已知样本点赋权重来求得未知样点的值
28、。不同的是,在过对已知样本点赋权重来求得未知样点的值。不同的是,在赋权重时,反距离权插值方法只考虑已知样本点与未知样点赋权重时,反距离权插值方法只考虑已知样本点与未知样点的距离远近,而克里格方法不仅考虑距离,而且通过变异函的距离远近,而克里格方法不仅考虑距离,而且通过变异函数和结构分析,考虑了已知样本点的空间分布及与未知样点数和结构分析,考虑了已知样本点的空间分布及与未知样点的空间方位关系。的空间方位关系。 15.5.2 15.5.2 普通克里格插值普通克里格插值普通克里格(普通克里格(Ordinary Kriging)是区域化变量的线性)是区域化变量的线性估计,它假设数据变化成正态分布,认为
29、区域化变量估计,它假设数据变化成正态分布,认为区域化变量Z的期的期望值是未知的。插值过程类似于加权滑动平均,权重值的确望值是未知的。插值过程类似于加权滑动平均,权重值的确定来自于空间数据分析。定来自于空间数据分析。 1、创建预测图(、创建预测图(Prediction Map) 2、创建分位数图(、创建分位数图(Quantile Map)3、创建概率图(、创建概率图(Probability Map)4、创建标准误差预测图(、创建标准误差预测图(Prediction Standard Error Map)15.5.3 15.5.3 简单克里格插值简单克里格插值简单克里格是区域化变量的线性估计,它假
30、设数据变化简单克里格是区域化变量的线性估计,它假设数据变化成正态分布,认为区域化变量成正态分布,认为区域化变量Z的期望值为已知的某一常数。的期望值为已知的某一常数。ArcGIS中普通克里格插值包括中普通克里格插值包括4部分功能,即创建预测图(部分功能,即创建预测图(Prediction Map)、创建分位数图()、创建分位数图(Quantile Map)、创建概)、创建概率图(率图(Probability Map)和创建标准误差预测图()和创建标准误差预测图(Prediction Standard Error Map)。)。 1、创建预测图(、创建预测图(Prediction Map) 2、创
31、建分位数图(、创建分位数图(Quantile Map)3、创建概率图(、创建概率图(Probability Map)4、创建标准误差预测图(、创建标准误差预测图(Prediction Standard Error Map)15.5.4 15.5.4 泛克里格插值泛克里格插值泛克里格假设数据中存在主导趋势,且该趋势可以用一个确泛克里格假设数据中存在主导趋势,且该趋势可以用一个确定的函数或多项式来拟合。在进行泛克里格分析时,首先分析数定的函数或多项式来拟合。在进行泛克里格分析时,首先分析数据中存在的变化趋势,获得拟合模型;其次,对残差数据(即原据中存在的变化趋势,获得拟合模型;其次,对残差数据(即
32、原始数据减去趋势数据)进行克里格分析;最后,将趋势面分析和始数据减去趋势数据)进行克里格分析;最后,将趋势面分析和残差分析的克里格结果加和,得到最终结果。由此可见,克里格残差分析的克里格结果加和,得到最终结果。由此可见,克里格方法明显优于趋势面分析,泛克里格的结果也要优于普通克里格方法明显优于趋势面分析,泛克里格的结果也要优于普通克里格的结果。的结果。 1、创建预测图(、创建预测图(Prediction Map) 2、创建分位数图(、创建分位数图(Quantile Map)3、创建概率图(、创建概率图(Probability Map)4、创建标准误差预测图(、创建标准误差预测图(Predict
33、ion Standard Error Map)15.5.5 15.5.5 指示克里格插值指示克里格插值在很多情况下,并不需要了解区域内每一个点的属性值,而在很多情况下,并不需要了解区域内每一个点的属性值,而只需了解属性值是否超过某一阈值,则可将原始数据转换为(只需了解属性值是否超过某一阈值,则可将原始数据转换为(0,1)值,选用指示克里格法()值,选用指示克里格法(Indicator Kriging)进行分析。)进行分析。ArcGIS中指示克里格插值包括中指示克里格插值包括2部分功能,即创建概率图(部分功能,即创建概率图(Probability Map)和创建标准误差指示图()和创建标准误差指
34、示图(Standard Error of Indicator Map)。)。1、创建概率图(、创建概率图(Probability Map)2、创建标准误差预测图(、创建标准误差预测图(Prediction Standard Error Map)15.5.6 15.5.6 概率克里格插值概率克里格插值ArcGIS中概率克里格插值包括中概率克里格插值包括2部分功能:创建概率图部分功能:创建概率图(Probability Map)和创建标准误差指示图()和创建标准误差指示图(Standard Error of Indicator Map)。)。 1、创建概率图(、创建概率图(Probability
35、Map)2、创建标准误差预测图(、创建标准误差预测图(Prediction Standard Error Map)15.5.7 15.5.7 析取克里格插值析取克里格插值如果原始数据不服从简单的分布(高斯或对数正态等),则可选用析如果原始数据不服从简单的分布(高斯或对数正态等),则可选用析取克里格法(取克里格法(Disjunctive Kriging),它可以提供非线性估值方法。),它可以提供非线性估值方法。ArcGIS中普通克里格插值包括中普通克里格插值包括4部分功能:创建预测图(部分功能:创建预测图(Prediction Map)、创建概)、创建概率图(率图(Probability Map
36、)、创建标准误差预测图()、创建标准误差预测图(Prediction Standard Error Map)和创建标准误差指示图()和创建标准误差指示图(Standard Error of Indicator Map)。)。 1、创建预测图(、创建预测图(Prediction Map) 2、创建概率图(、创建概率图(Probability Map)3、创建标准误差预测图(、创建标准误差预测图(Prediction Standard Error Map)4、创建标准误差指示图(、创建标准误差指示图(Standard Error of Indicator Map)15.5.8 15.5.8 协同克
37、里格插值协同克里格插值当同一空间位置样点的多个属性之间存在某个属性的当同一空间位置样点的多个属性之间存在某个属性的空间分布与其它属性密切相关,且某些属性获得不易,而另空间分布与其它属性密切相关,且某些属性获得不易,而另一些属性则易于获取时,如果两种属性空间相关,可以考虑一些属性则易于获取时,如果两种属性空间相关,可以考虑选用协同克里格法。协同克里格法把区域化变量的最佳估值选用协同克里格法。协同克里格法把区域化变量的最佳估值方法,从单一属性发展到两个以上的协同区域化属性。但它方法,从单一属性发展到两个以上的协同区域化属性。但它在计算中要用到两属性各自的半方差函数和交叉半方差函数在计算中要用到两属
38、性各自的半方差函数和交叉半方差函数,比较复杂。协同克里格方法插值的实现过程与上述操作基,比较复杂。协同克里格方法插值的实现过程与上述操作基本类似。本类似。15.6 15.6 小结小结本章简单介绍了地统计分析方法的概念和基本原理,本章简单介绍了地统计分析方法的概念和基本原理,及地统计分析方法在及地统计分析方法在ArcGIS的地统计分析扩展模块中的实的地统计分析扩展模块中的实际运用操作。际运用操作。在模块工具中,本章详细介绍了在模块工具中,本章详细介绍了ArcGIS的地统计分析的地统计分析扩展模块的工具以及工具的使用方法。在插值方法中,本章扩展模块的工具以及工具的使用方法。在插值方法中,本章介绍了
39、空间确定性插值与地统计插值。在空间确定性插值中介绍了空间确定性插值与地统计插值。在空间确定性插值中详细介绍了反距离加权插值、全局多项式插值、局部多项式详细介绍了反距离加权插值、全局多项式插值、局部多项式插值、径向基函数插值的方法和具体的操作步骤。在地统计插值、径向基函数插值的方法和具体的操作步骤。在地统计插值中,详细介绍了普通克里格插值、简单克里格插值、泛插值中,详细介绍了普通克里格插值、简单克里格插值、泛克里格插值、指示克里格插值、概率克里格插值、析取克里克里格插值、指示克里格插值、概率克里格插值、析取克里格插值、协同克里格插值等的具体方法和详细地操作步骤。格插值、协同克里格插值等的具体方法
40、和详细地操作步骤。实验:克里格方法内插生成高程曲面实验:克里格方法内插生成高程曲面1 背景背景 现有某地区一系列高程采样点,需要通过内插生成该地区的高程曲面,为后续研究提供合理的数据层面信息。2 目的目的 地统计模块中提供了六种克里格插值方法,每种方法的原理和适用范围不尽相同。通过练习熟练掌握并理解每种克里格方法的原理及其实习过程,体会在具体应用中的适应性。3 要求要求 根据数据特征,至少选用一种克里格方法内插生成高程曲面,并分析对于此案例该方法的适用性。有能力的同学可选用多种克里格方法进行插值,并比较对于此例不同方法的优劣。4 数据数据 某地区的高程采样点数据,数据存放在ex15 操作步骤操
41、作步骤 1)在)在arcmap中加载中加载jyg.shp。 2)右击工具栏,启动地统计模块)右击工具栏,启动地统计模块Geostatistical Analyst。 3)单击)单击Geostatistical Analyst模块的下拉箭头并单模块的下拉箭头并单击击creat subsets命令。命令。next4)单击)单击Geostatistical Analyst模块下拉箭头选择模块下拉箭头选择explore data中的中的histogram,或单击,或单击Geostatistical Analyst模模块下拉箭头选择块下拉箭头选择explore data中的中的normal QQPlot
42、命令,生成命令,生成结果如下图所示,由下图可知,数据分布基本符合正态分布结果如下图所示,由下图可知,数据分布基本符合正态分布的假设,不需要进行数据变换。的假设,不需要进行数据变换。5)单击)单击Geostatistical Analyst模块下拉箭头选择模块下拉箭头选择explore data中的中的trend analysis命令,查看数据是否存在趋命令,查看数据是否存在趋势。由下图所知,南北方向不存在趋势,而东西方向有明显势。由下图所知,南北方向不存在趋势,而东西方向有明显的东高西低的趋势出现,因此需要用一次曲面拟合,即在后的东高西低的趋势出现,因此需要用一次曲面拟合,即在后续剔除趋势中选
43、择续剔除趋势中选择first。5)单击)单击Geostatistical Analyst模块下拉箭头选择模块下拉箭头选择Geostatistical wizard。6)在)在dataset1选项卡中选择训练数据选项卡中选择训练数据jyg-training及其及其属性属性station,在,在validation选项卡中选择检验数据选项卡中选择检验数据jyg-test及及其属性其属性station,在,在methods中选择中选择kriging内插方法。最后单内插方法。最后单击击next。7)展开泛克里格)展开泛克里格universival kriging,并单击预测图,并单击预测图prediction map,在,在dataset1选项卡中的选项卡中的transformation里选里选择择none变化方式表示无需进行数据变换,在变化方式表示无需进行数据变换,在order of trend中中选择选择first,单击,单击next。剔除趋势示意图剔除趋势示意图8)在)在Detrending对话框中,点击对话框中,点击next。9)在)在semivariogram/covariance modeling对话框中,对话框中,先按照默认参数进行操作,在得到对精度模型评定的结果后先按照默认参数进行操作,在得到对精度模型评定的结果后,发现结果误差太大,返回更改对话框中的参数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有效吸收知识应对2025年证券从业资格证考试试题及答案
- 微生物检测的实践意义试题及答案
- 项目实施中的流程优化分析探讨试题及答案
- 窑洞修整施工方案怎么写
- 考生反思与总结证券从业试题及答案
- 福建事业单位考试职业发展形势的未来展望试题及答案
- 电玩具高级编程语言应用考核试卷
- 2025年危险化学品安全-氯化工艺作业模拟考试题及答案
- 2024年项目管理关键干系人的考察试题及答案
- 公路客运信息化建设与应用考核试卷
- 幼儿园小班健康《打针吃药我不怕》课件
- 艺术概论智慧树知到答案2024年宁波财经学院
- 微纳尺度力学与器件
- 法莫替丁注射液-外科
- 全厂接地装置安装施工方案
- 人工智能在航空航天工程中的应用
- 2024年荆门中荆投资控股集团招聘笔试冲刺题(带答案解析)
- 2024山西建设投资集团有限公司招聘笔试冲刺题(带答案解析)
- +山东省泰安市肥城市2023-2024学年七年级下学期期中考试英语试题+
- (高清版)JTGT 5440-2018 公路隧道加固技术规范
- 北京市各区2024届高三二模政治试题汇编:法律与生活-2024届高考政治三轮冲刺
评论
0/150
提交评论