毕业设计论文基于51单片机倒车防撞系统设计_第1页
毕业设计论文基于51单片机倒车防撞系统设计_第2页
毕业设计论文基于51单片机倒车防撞系统设计_第3页
毕业设计论文基于51单片机倒车防撞系统设计_第4页
毕业设计论文基于51单片机倒车防撞系统设计_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 绪论1.1 超声波检测发展概述 超声波检测技术作为无损检测技术的重要手段之一,在其发展过程中起着重要的作用,它提供了评价固体材料的微观组织及相关力学性能、检测其微观和宏观不连续性的有效通用方法。由于其信号的高频特性,超声波检测早期仅使用模拟量信号的分析,大部分检测设备仅有A扫描形式,需要通过有经验的无损检测人员对信号进行人工分析才能得出正确的结论,对检测和分析人员的要求较高,因此,人为因素对检测的结果影响较大,波形也不易记录和保存,不适宜完成自动化检测。八十年代后期,由于计算机技术和高速器件的不断发展,使超声波信号的数字化采集和分析成为可能。目前国内也相继出现了各类数字化超声波检测设备,并

2、成为超声波检测的发展方向。目前国内外在超声波检测领域都向着数字化方向发展,数字式超声波检测仪器的发展速度很快。国内近几年也相继出现了许多数字式超声波仪器和分析系统。随着检测技术研究的不断深入,对超声波检测仪器的功能要求也越来越高。由于单数码显示的超声检测仪会给测读带来较大的测试误差,因此要求以后生产的超声检测仪能够具有双显及其内部带有单片机的微处理功能。随后具有检测,记录,存储,数据处理与分析等多项功能的智能化检测分析仪相继研制成功。超声仪研制呈现一派繁荣景象。目前,计算机市场价格大幅下降,若采用非一体化超声波检测仪器,则计算机可发挥它一机多用的各种功能,这实际上是最大的节约。过去那种全功能的

3、仪器设置,还不如单独的超声仪,计算机可充分发挥各自特点。高智能化检测仪器只能满足检测条件,当使用环境,重复性测试内容等基本情况一样时,才可充分发挥其特有功能。仪器的设计也应从实际情况出发,来满足用户的要求。综上所述,我国超声波仪器的研制与生产,有较大发展,有的型号已超过国外同类仪器水平。1.2 设计的背景、目的和意义传感器技术是现代信息技术的主要内容之一。信息技术包括计算机技术、通信技术和传感器技术,计算机技术相当于人的大脑,通信相当于人的神经,而传感器就相当于人的感官。比如温度传感器、光电传感器、湿度传感器、超声波传感器、红外传感器、压力传感器等等,其中,超声波传感器在测量方面有着广泛、普遍

4、的应用。利用单片机控制超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且测量精度较高。超声波测距系统主要应用于汽车的倒车雷达、机器人自动避障行走、建筑施工工地以及一些工业现场例如:液位、井深、管道长度等场合。因此研究超声波测距系统的原理有着很大的现实意义。对本课题的研究与设计,还能进一步提高自己的电路设计水平,深入对单片机的理解和应用。1.3 设计的主要内容以单片机为核心的超声波测距系统设计简单、方便,而且测精度能达到工业要求。本课题研究的超声波倒车防撞报警系统就是用单片机控制的。通过超声波发射器向某一方向发射超声波,单片机在发射时刻同时开始计时,超声波在空气中传播,途中碰到障碍物

5、就立即反射回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为V,根据计时器记录的时间T,就可以计算出发射点距障碍物的距离。本系统利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时。接收电路的输出端接单片机的外部中断源输入口。系统定时发射超声波,在启动发射电路的同时启动单片机内部的定时器,利用定时器的计数功能记录超声波发射的时间和收到反射波的时间。当收到超声波的反射波时,接收电路输出端产生一个负跳变,在单片机的外部中断源输入口产生一个中断请求信号,单片机响应外部中断请求执行外部中断服务子程序,读取时间差,计算距离,结果输出给LED显示。2 单片机超声波测距报警系统

6、总体设计该超声波测距报警系统初步计划是小范围的测距。本章从整体结构角度讨论了测距系统的组成及一些系统主要参数。2.1 超声波测距系统的总体方案系统的设计及器件的选择也正是在这个基础上进行的,系统结构如图2-1所示。图2-1 超声波测距报警硬件电路图发射电路通常有调谐式和非调谐式。在调谐电路中有调谐线圈(有时装在探头内),谐振频率由调谐电路的电感、电容决定,发射出的超声脉冲频带较窄。在非调谐式电路中没有调谐元件,发射出的超声频率主要由压电晶片的固有参数决定,频带较宽。为了将一定频率、幅度的交流电压加到发射传感器的两端,使其震动发出超声。电路频率的选择应该满足发射传感器的固有频率40KHz,这样才

7、能使其工作在谐振频率,达到最优的特性。发射电压从理论上说是越高越好,因为对同一个发射传感器而言,电压越高,发射的超声功率就越大,这样能够在接收传感器上接收的回波功率就比较大,对于接收电路的设计就相对简单一些。但是,每一个实际的发射传感器有其工作电压的极限值,即当工作电压超过了这个极限值之后,会对传感器的内部电路造成不可回复的损害。因此,工作电压不能超过这个极限值。同时,发射电路中的阻尼电阻决定了电路的阻尼情况。通常采用改变阻尼电阻的方法来改变发射强度。电阻大时阻尼小,发射强度大,仪器分辨率低,适宜于探测厚度大,对分辨力要求不高的试件。电阻小时阻尼大,分辨率高,在探测近表面缺陷时或对分辨力有较高

8、要求时应予采用。发射部分的点脉冲电压很高,但是由障碍物回波引起的压电晶片产生的射频电压不过几十毫伏,要对这样小的信号进行处理就必须放大到一定的幅度。接收部分就是主要由放大电路,检波电路构成的,其中包括杂波抑制电路。最终达到对回波进行放大检测,产生一个单片机能够识别的中断信号作为回波到达的标志。但是由于超声传感器固有特性,即盲区的存在,对于回波的接收和处理造成了相当程度的影响。2.2 系统主要参数考虑系统的主要参数有传感器的指向角、测距的工作频率、声速、脉冲宽度、测量盲区等,下面做介绍并阐述。 传感器的指向角传感器的指向角是声束半功率的夹角,是影响测距的一个重要技术参数,它直接影响测量的分辨率。

9、对圆片传感器来说,它的大小与工作波长,传感器半径r有关。 (720°/)*r*sin(/2)=1.615 (2-1)选f0=40KHz时,=C/f0=8.5mm。当f0选定后,指向角近似与传感器半径成反比。指向角越小,空间分辨率越高,则要求传感器半径r越大。鉴于目前电子市场的压电传感片规格有限,为降低成本,在不降低空间分辨率的条件下选用国产现有压电传感器片最大半径r=6.3mm,故=2*arcsin(1.615/720°*r)=75°1。2.2.2 测距仪的工作频率空气中超声波的衰减对频率很敏感,要求合理选择超声波频率,一般在40KHz左右。太高频率的超声波在空气

10、中是无法传播开去的。传感器的工作频率是测距系统的主要技术参数,它直接影响超声波的扩散和吸收 ,障碍物反射损失,背景噪声,并直接决定传感器的尺寸。工作频率的确定主要基于以下几点考虑:第一、如果测距的能力要求很大,声波传播损失就相对增加,由于介质对声波的吸收与声波频率的平方成正比,为减少声波的传播损失,就必须降低工作频率。第二、工作频率越高,对相同尺寸的换能器来说,传感器的方向性越尖锐,测量障碍物复杂表面越准,而且波长短,尺寸分辨率高,“细节”容易辨识清楚,因此从测量复杂障碍物表面和测量精度来看,工作频率要求提高。第三、从传感器设计角度看,工作频率越低,传感器尺寸就越大,制造和安装就越困难。综上所

11、述,由于本测距仪最大测量量程不大,因而选择测距仪工作频率在40KHz,定为44KHz。这样传感器方向性尖锐,且避开了噪声,提高了信噪比;虽然传播损失相对低频有所增加,但不会给发射和接收带来困难。 声速由公式(2-1),声速的精确程度线性的决定了测距系统的测量精度。传播介质中声波的传播速度随温度,杂质含量,和介质压力的变化而变化。声速随温度变化公式为: V=331.4+0.607T(mm/ms) (2-2)式中T是温度。由于该测距系统用于室内测量,且量程也不大,温度可以看作定值。在常温下,声音在空气中的传播速度可依据上式计算为340mm/ms。 发射脉冲宽度发射脉冲宽度决定了测距仪的测量盲区,也

12、影响测量精度,同时与信号的发射能量有关。根据资料,减小发射脉冲宽度,可以提高测量精度,减小测量盲区,但同时也减小了发射能量,对接收回波不利。但是根据实际的经验,过宽的脉冲宽度会增加测量盲区,对接收回波及比较电路都造成一定困难。在具体设计中,比较了24微秒(一个40KHz脉冲方波),120微秒(5个40KHz脉冲方波)的发射脉冲宽度。此时,从接收回波信号幅度和测量盲区两个方面来衡量比较适中。2.2.5 测量盲区在以传感器脉冲反射方式工作的情况下,电压很高的发射电脉冲在激励传感器的同时也进入接收部分。此时,在短时间内放大器的放大倍数会降低,甚至没有放大作用,这种现象称为阻塞。不同的检测仪阻塞程度不

13、一样。根据阻塞区内的缺陷回波高度对缺陷进行定量评价会使结果偏低,有时甚至不能发现障碍物,这是需要注意的。由于发射声脉冲自身有一定的宽度,加上放大器有阻塞问题,在靠近发射脉冲一段时间范围内,所要求发现的缺陷往往不能被发现,这段距离,称为盲区,具体分析如下:当发射超声波时,发射信号虽然只维持一个极短时间,但停止施加发射信号后,探头上还存在一定余振(由于机械惯性左右)。因此,在一段较长时间内,加在接收放大器输入端的发射信号幅值仍具一定幅值高度,可以达到限幅电路的限幅电平VM;另一方面,接收探头上接收到的各种反射信号却远比发射信号小,即使是离探头越来越远,接收和发射信号相隔时间越来越长,其幅值也越来越

14、小。在超声波检测中,接收信号的衰减总是比发射信号余振衰减慢的多。为保证一定的信噪比,接收信号幅值需达到规定的阀值Vm,亦即接收信号的幅值必须大于这一阀值才能使接收放大器有输入信号。3 单片机倒车防撞报警系统各组成单元方案设计3.1 发射电路的设计由单片机产生的40kHz的方波需要进行放大,才能驱动超声波传感器发射超声波,发射驱动电路其实就是一个信号放大电路,本课题所选用的是74HC04集成芯片,图3-1为发射电路图。图3-1 发射电路74HC04内部集成了六个反向器,同时具有放大的功能。74HC04的管脚如图3-2所示。图3-2 74HC04管脚图3.2 接收电路的设计超声波接收头接收到超声波

15、后,转换为电信号,此时的信号比较弱,必需经过放大。本系统采用了LM741对接收到的信号进行放大,接收电路如图3-3所示。图3-3 接收电路超声波探头接收到超声波后,通过声电转换,产生一正弦信号,其频率为传感器的中心频率,即40kHz。该信号通过C1高通滤波后经LM741放大,最后经二极管整形后输出到单片机中断口。LM741是一单运放集成芯片,图3-4为LM741管脚图。图3-4 LM741管脚图3.3 显示模块的设计显示器是一个典型的输出设备,而且其应用是极为广泛的,几乎所有的电子产品都要使用显示器,其差别仅在于显示器的结构类型不同而已。最简单的显示器可以是LED发光二极管,给出一个简单的开关

16、量信息,而复杂的较完整的显示器应该是CRT监视器或者屏幕较大的LCD液晶屏。综合课题的实际要求以及考虑单片机的接口资源,采用串行方式显示的LED驱动输出设备。由于全程显示的距离范围在4米之内,用3个LED数码管表示距离的cm数值。在单片机应用系统中,发光二极管LED显示器常用两种驱动方式:静态显示驱动和动态显示驱动。所谓静态显示驱动,就是给要点亮的LED通以恒定的电流,即每一位LED显示器各引脚都要占用单独的具有锁存功能的I/O接口。单片机只需要把要显示的字形段码发送到接口电路并保持不变即可,如果要显示新的数据,再发送新的字形段码。因此,使用这种方法单片机中CPU开销小,但这种驱动方法需要寄存

17、器、译码器等硬件设备。当需要显示位数增加时,所需的器件和连线也相应增加,成本也增加。而所谓动态显示驱动就是给欲点亮的LED通以脉冲电流,即采用分时的方法,轮流控制各个显示器的COM端,使各个显示器轮流点亮,这时LED的亮度就是通断的平均亮度。考虑各种因素,本设计选用动态驱动显示。本设计选用8155芯片作为单片机应用系统扩展的I/O口。8155的PA口作为LED的字形输出口,为提高显示亮度,采用8路反相驱动器74LS06以提高驱动能力。图3-5 系统显示电路3.4 系统报警电路设计系统报警电路由一个运算放大器、一个发光二极管和一个喇叭组成。R25的阻值1K,R26的阻值为10K。对于二级运算放大

18、,都采用F007芯片。两级放大电路均是负反馈接法,即反相比例运算电路。而反相比例运算电路中,输入信号从反相输入端输入,同相输入端接地。根据“虚短”和“虚断”的特点,即u-=u+,i-=i+=0。可得u+=0。而所谓“虚短”是由于理想集成运放Au0趋近与无穷。所以可以认为两个输入端之间的差模电压近似为零,即Uid=u+0。即u-=u+,而u0具有一定值。由于两个输入端间的电压为零,而又不是短路,故称“虚短”。而“虚断”是由于理性集成运放的输入电阻Rid趋近与无穷,故可以认为输入端不取电流,即i-=i+0。这样,输入端相当于断路,而又不是断开,故称“虚断”。而电路中,反相输入端与地端等电位,但又不

19、是真正接地,这种情况称为“虚地”。所以iI=uI/RI,iF=(u_-u0)/Rf=_u0/Rf,因为i-=0,iI=if,可得u0=-Rf*uI/Ri。故可将信号进行放大。图3-6 系统报警电路当单片机AT89C51通过P1.0,P1.1,P1.2三个I/O口,发射出超声波的信号,即输出一个高电平给这三个I/O口,大约5V的电压,同时单片机计数器T0开始计时。则信号经过三极管T1,T2,T3进行放大。使电流达到T40-16的工作电流,从而发射出超声波。3.5 2单片机复位电路在单片机应用系统工作时,除了进入系统正常的初始化之外,当由于程序运行出错或操作错误使系统处于死锁状态时,为摆脱困境,也

20、需按复位键以重新启动。所以,系统的复位电路必须准确、可靠地工作。单片机的复位都是靠外部电路实现的,在时钟电路工作后,只要在单片机的RST引脚上出现24个时钟振荡脉冲以上的高电平,单片机便实现初始化状态复位。为了保证应用系统可靠地复位,在设计复位电路时,通常使RST保持高电平。只要RST保持高电平,则单片机就循环复位。单片机复位电路通常采用一下几种方式:第一、 上电自动复位在通电瞬间,由于RC电路充电过程中,RST端出现正脉冲,从而使单片机复位。图3-7 上电复位电路第二、 按键电平复位通过使复位端经电阻与VCC电源接通而实现的。图3-8 晶振电路电路中的C1和C2一般取30PF左右,而晶体振荡

21、器的频率范围通常是1.212MHz,而电路中采用6MHz,晶体振荡器的频率越高,振荡频率就越高。4 系统硬件及软件实现4.1 单片机硬件介绍4.1.1 单片机基础知识单片微型计算机简称单片机,特别适用于控制领域,故又称为微控制器(Microcontroller)。单片微型计算机是微型计算机的一个重要分支,也是一种非常活跃且颇具生命力的机种。通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:CPU(Central Processing Unit,中央处理器)、存储器和I/O接口电路等。因此,单片机只需要与适当的软件及外部设备相结合,便可成为一个单片机控制系统。4.1.2 单片机

22、内部结构单片机内部结构如图4-1所示。图4-1 单片机内部结构与单片机相比,微型计算机是一种多片机系统。它是由中央处理器(CPU)芯片、ROM芯片、RAM芯片和I/O接口芯片等通过印刷电路板上总线(地址总线AB、数据总线DB和控制总线CB)连成一体的完整计算机系统。其中,中央处理器(CPU)的字长长,功能强大;ROM和RAM的容量很大;I/O接口的功能也大,这是单片机无法比拟的。因此,单片机在结构上与微型计算机十分相似,是一种集微型计算机主要功能部件于同一块芯片上的微型计算机,并由此而得名。由图4-1可见,中央处理器(CPU)是通过内部总线与ROM、RAM、I/O接口以及定时器/计数器相连的,

23、这个结构并不复杂,但并不好理解。为此,在分析单片机工作原理前,先对图4-1中各部件作一基本介绍是十分必要的。第一、存储器在单片机内部,ROM和RAM存储器是分开制造的。通常,ROM存储器容量较大,RAM存储器的容量较小,这是单片机用于控制的一大特点。(1) ROMROM(Read Only Memory,只读存储器)一般为132K字节,用于存放应用程序,故又称为程序存储器。由于单片机主要在控制系统中使用,因此一旦该系统研制成功,其硬件和应用程序均已定型。为了提高系统的可靠性,应用程序通常固化在片内ROM中,根据片内ROM的结构,单片机又可分为无ROM型、ROM型和EPROM(Erasable

24、Programmable Read Only Memory,可擦除可编程只读存储器)型三类。近年来,又出现了EEPROM(Electrically Erasable Programmable Read Only Memory,电擦除可编程只读存储器)和Flash型ROM存储器。无ROM型单片机特点是片内不集成ROM存储器,故应用程序必须固化到外接的ROM存储器芯片中,才能构成有完整功能的单片机应用系统。ROM型单片机内部,其程序存储器是采用掩膜工艺制成的,程序一旦固化进去便永远不能修改。EPROM型单片机内部的程序存储器是采用特殊FAMOS管构成的,程序一旦写入,也可以通过特殊手段加以修改。因

25、此,EPROM型单片机是深受研制人员欢迎的。(2) RAM通常,单片机片内RAM(Random Access Memory,随机存取存储器)容量为64256字节,最多可达48K字节。RAM主要用来存放实时数据或作为通用寄存器、数据堆栈和数据缓冲器之用。第二、中央处理器(CPU)中央处理器的内部结构极其复杂,要像电子线路那样画出它的全部电路原理图来加以分析介绍是根本不可能的。下面简单概述一下几个主要部分的工作原理。(1)运算器运算器用于对二进制数进行算术运算和逻辑操作;其操作顺序在控制器控制下进行。运算器由算术逻辑单元ALU、累加器A、通用寄存器R0、暂存器TMP和状态寄存器PSW等五部分组成。

26、(2)累加器累加器A(Accumulator)是一个具有输入/输出能力的移位寄存器,由8个触发器组成。TR(Temporary Register,暂存器)也是一个8位寄存器,用于暂存另一操作数。ALU(Arithmetic and Logical Unit,算术逻辑单元)主要由加法器、移位电路和判断电路等组成,用于对累加器A和暂存器TMP中两个操作数进行四则运算和逻辑操作。PSW(Program Status Word,程序状态字)也由8位触发器组成,用于存放ALU操作过程中形成的状态。(3)控制器控制器是发布操作命令的机构,是计算机的指挥中心,相当于人脑的神经中枢。控制器由指令部件、时序部件

27、和微操作控制部件等三部分组成。指令部件是一种能对指令进行分析、处理和产生控制信号的逻辑部件,也是控制器的核心。指令是一种能供机器执行的控制代码,有操作码和地址码两部分。时序部件由时钟系统和脉冲分配器组成,用于产生微操作控制部件所需的定时脉冲信号。微操作控制部件可以为ID(Instruction Decoder,指令译码器)输出信号配上节拍电位和节拍脉冲,也可与外部进来的控制信号组合,共同形成相应的微操作控制序列,以完成规定的操作。第三、内部总线单片机内部总线是CPU连接片内各主要部件的纽带,是各类信息传送的公共通道。内部总线主要由三种不同性质的连线组成,它们是地址线、数据线和控制线/状态线。地

28、址线主要用来传送存储器所需要的地址码或外部设备的设备号,通常由CPU发出并被存储器或I/O接口电路所接收。数据线用来传送CPU写入存储器或经I/O接口送到输出设备的数据,也可以传送从存储器或输入设备经I/O接口读入的数据。因此,数据线通常是双向信号线。控制/状态线有两类:一类是CPU发出的控制命令,如读命令、写命令、中断响应等;另一类是存储器或外设的状态信息,如外设的中断请求、存储器忙和系统复位信号等。第四、I/O接口和特殊功能部件I/O接口电路有串行和并行两种。串行I/O用于串行通信,它可以把单片机内部的并行8位数据(8位机)变成串行数据向外传送,也可以串行接收外部送来的数据并把它们变成并行

29、数据送给CPU处理。并行I/O口电路可以使单片机和存储器或外设之间并行地传送8位数据(8位机)。4.1.3 单片机的基本工作原理单片机是通过执行程序来工作的,机器执行不同程序就能完成不同的运算任务。因此,单片机执行程序的过程实际上也体现了单片机的基本工作原理。为此,先从指令程序谈起。第一、单片机的指令系统和程序编制指令是一种可以供机器执行的控制代码,故它又称为指令码(Instruction Code)。指令码由操作码(Operation Code)和地址码(Address Code)构成:操作码用于指示机器执行何种操作;地址码用于指示参加操作的数在哪里。其格式为:操作码地址码 指令码的二进制形

30、式既不便于记忆,又不便于书写,故人们通常采用助记符形式来表示,表4-1所列。表4-1 指令的三种形式指令的二进制形式指令的十六进制形式指令的汇编形式01110100 data174 data1MOV A,#data1;Adata100100100 data224 data2ADD A,#data2; Adata1+data210000000 111111080 FESJMP $;停机指令的集合或指令的全体称为“指令系统”(Instruction System)。微处理器类型不同,它的指令系统也不一样。所谓程序就是采用指令系统中的指令根据题目要求排列起来的有序指令的集合。程序的编制称为“程序设计

31、”。通常,设计人员采用指令的汇编符(即助记符)形式编程,这种程序设计称为“汇编语言程序设计”。显然,设计人员如果不熟悉机器的指令系统是无法编出优质高效的程序的。第二、单片机执行程序的过程为了弄清单片机的工作原理,现以如下的Y=5+10求和程序来说明单片机的工作过程。7405HMOVA,#05H;A05H240AHADDA,#0AH;A5+1080FEHSJMP$;停机该程序由三条指令组成,每条指令均为双字节指令(即第一字节为操作码,第二字节为地址码)。第一条指令的含义是把05H传送到累加器A中;第二条指令是加法指令,它把累加器A中的5和立即数10相加,结果保留到累加器A中;第三条是停机指令,机

32、器执行后处于动态停机状态。4.1.4 单片机的分类及发展1974年,美国仙童(Fairchild)公司研制出世界上第一台单片微型计算机F8,该机由两块集成电路芯片组成,结构奇特,具有与众不同的指令系统,深受民用电器和仪器仪表领域的欢迎和重视。从此,单片机开始迅速发展,应用范围也在不断扩大,现已成为微型计算机的重要分支。第一、单片机的分类20世纪80年代以来,单片机有了新的发展,各半导体器件厂商也纷纷推出自己的产品系列。迄今为止,市售单片机产品已达60多个系列,600多个品种。按照CPU对数据处理位数来分,单片机通常可以分为以下四类。(1) 4位单片机 4位单片机的控制功能较弱,CPU一次只能处

33、理4位二进制数。这类单片机常用于计算器、各种形态的智能单元以及作为家用电器中的控制器。(2) 8位单片机 8位单片机的控制功能较强,品种最为齐全。和4位机相比,它不仅具有较大的存储容量和寻址范围,而且中断源、并行I/O接口和定时器/计数器个数都有不同程度的增加,并集成有全双工串行通信接口。在指令系统方面,普遍增设了乘除指令和比较指令。特别是8位机中的高性能增强型单片机,除片内增加了A/D和D/A转换器以外,还集成有定时器捕捉/比较寄存器、监视定时器(Watchdog)、总线控制部件和晶体振荡电路等。这类单片机由于其片内资源丰富且功能强大,主要在工业控制、智能仪表、家用电器和办公自动化系统中应用

34、。(3) 16位单片机 16位单片机是在1983年以后发展起来的。这类单片机的特点是:CPU是16位的,运算速度普遍高于8位机,有的单片机寻址能力高达1MB,片内含有A/D和D/A转换电路,支持高级语言。这类单片机主要用于过程控制、智能仪表、家用电器以及作为计算机外部设备的控制器。(4) 32位单片机 32位单片机的字长为32位,是单片机的顶级产品,具有极高的运算速度。近年来,随着家用电子系统的新发展,32位单片机的市场前景看好。第二、8位单片机的新发展目前,单片机正朝着高性能和多品种方向发展,尤其是8位单片机已成为当前单片机的主流。8位单片机的新发展具体体现在如下四个方面:(1) CPU功能

35、增强(2) 内部资源增多(3) 引脚的多功能化(4) 低电压和低功耗3 单片机AT89C51的特性AT89C51系列单片机是Atmel公司生产的一款标准型单片机。其中数字9表示内含Flash存储器,C表示CMOS工艺。其管脚图如图4-2所示。 AT89C51 AT89C2051图4-2 AT89C51单片机管脚图AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROMFalsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS 8位微处理器,俗称单片机。AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片

36、机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。第一、主要特性与MCS-51 兼容 4K字节可编程闪烁存储器 寿命:100写/擦循环数据保留时间:10年全静态工作:0Hz-24Hz三级程序存储器锁定128×8位内部RAM32可编程I/O线两个16位定时器/计数器5个中断源 可编程串行

37、通道低功耗的闲置和掉电模式片内振荡器和时钟电路第二、管脚说明VCC:供电电压GND:接地P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程

38、和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个T

39、TL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流,这是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口,如下所示:P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。A

40、LE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问

41、外部数据存储器时,这两次有效的/PSEN信号将不出现。/EA/VPP:当/EA保持低电平,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。第三、振荡器特性XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至

42、内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。第四、芯片擦除整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。4.2 超声

43、波传感器硬件介绍4.2.1 超声波传感器为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的因有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两极间未外加

44、电压,当共振板接收到超声波时,将压迫压电晶片振动,将机械能转换为电信号,这时它就成为超声波接收器了。在本章里,将介绍超声波传感器的原理和特性,检测方式以及超声波传感系统的构成。 4.2.2 超声波传感器的原理及特性人们可以听到的声音频率为20Hz20kHz,即为可听声波,超出此频率范围的声音,即20Hz以下的声音称为低频声波,20kHz以上的声音称为超声波,一般说话的频率范围为100Hz8kHz。超声波为直线传播方式,频率越高,绕射能力越弱,但反射能力越强,为此利用超声波的这种性质就可以制成超声波传感器。另外,超声波在空气中传播的速度较慢,约为330m/s,这就使得超声波传感器使用变得非常简单

45、。超声波传感器有发送器和接收器,但一个超声波传感器也可以具有发送和接收声波的双重作用,即为可逆元件。一般市场上出售的超声波传感器有专用型和兼用型,专用型就是发送器用作发送超声波,接收器用作接收超声波;兼用型就是发送器和接收器为一体传感器,即可发送超声波,又可接收超声波。超声波传感器的谐振频率(中心频率)有23kHz、40kHz、75kHz、200kHz、400kHz等。谐振频率变高,则检测距离变短,分解力也变高。超声波传感器是利用压电效应的原理,压电效应有逆效应和顺效应,超声波传感器是可逆元件,超声波发送器就是利用压电逆效应的原理。所谓压电逆效应如图4-3所示,是在压电元件上施加电压,元件就变

46、形,即称应变。若在图4-3a所示的已极化的压电陶瓷上施加如图4-3b所示极性的电压,外部正电荷与压电陶瓷的极化正电荷相斥,同时,外部负电荷与极化负电荷相斥。由于相斥的作用,压电陶瓷在厚度方向上缩短,在长度方向上伸长。若外部施加的极性变反,如图4-3c所示那样,压电陶瓷在厚度方向上伸长,在长度方向上缩短。图4-3 压电逆效应超声波传感器采用双晶振子,即把双压电陶瓷片以相反极化方向粘在一起,在长度方向上,一片伸长,另一片就缩短。在双晶振子的两面涂敷薄膜电极,其上面用引线通过金属板(振动板)接到一个电极端,下面用引线直接接到另一个电极端。双晶振子为正方形,正方形的左右两边由圆弧形凸起部分支撑着。这两

47、处的支点就成为振子振动的节点。金属板的中心有圆锥形振子。发送超声波时,圆锥形振子有较强的方向性,因而能高效率地发送超声波;接收超声波时,超声波的振动集中于振子的中心,所以,能产生高效率的高频电压。采用双晶振子的超声波传感器,若在发送器的双晶振子(谐振频率为40kHz)上施加40kHz的高频电压,压电陶瓷片就根据所加的高频电压极性伸长与缩短,于是就能发送40kHz频率的超声波。超声波以疏密波形式传播,传送给超声波接收器。超声波接收器是利用压电效应的原理,即在压电元件的特定方向上施加压力,元件就发生应变,则产生一面为正极,另一面为负极的电压。若接收到发送器发送的超声波,振子就以发送超声波的频率进行

48、振动,于是,就产生与超声波频率相同的高频电压,当然这种电压是非常小的,必须采用放大器放大。现以MA40S2R接收器和MA40S2S发送器为例说明超声波传感器的各种特性,表4-2示出的就是这种超声波传感器的特性。传感器的标称频率为40kHz,这是压电元件的中心频率,实际上发送超声波时是串联谐振与并联谐振的中心频率,而接收时各自使用并联谐振频率。表4-2 超声波传感器MA40S2R/S的特性种类特性MA40S2R接收MA40S2S发送标称频率40kHz灵敏度74dB以上100dB以上带宽6kHz以上(80dB)7kHz以上(90dB)电容1600pF1600pF绝缘电阻100M以上温度特性20+6

49、0范围内灵敏度变化在10dB以内数据来源: 2005年4月传感器技术及其应用超声波传感器的带宽较窄,大部分是在标称频率附近使用,为此,要采取措施扩展频带,例如,接入电感等。另外,发送超声波时输入功率较大,温度变化使谐振频率偏移是不可避免的,为此,对于压电陶瓷元件非常重要的是要进行频率调整和阻抗匹配。MA40S2R/S传感器的发送与接收的灵敏度都是以标称频率为中心逐渐降低,为此,发生超声波时要充分考虑到这一点以免逸出标称频率。图4-4表示传感器方向性的特性,这种传感器在较宽范围内具有较高的检测灵敏度,因此,适用于物体检测与防犯报警装置等。另外,对于这种传感器,一般来说温度越高,中心频率越低,为此

50、,在宽范围环境温度下使用时,不仅在外部进行温度补偿,在传感器内部也要进行温度补偿。图4-4 传感器的方向性4.2.3 超声波传感器的检测方式第一、穿透式超声波传感器的检测方式当物体在发送器与接收器之间通过时,检测超声波束衰减或遮挡的情况从而判断有无物体通过。这种方式的检测距离约1m,作为标准被检测物体使用100mm×100mm的方形板。它与光电传感器不同,也可以检测透明体等。第二、限定距离式超声波传感器的检测方式当发送超声波束碰到被检测物体时,仅检测电位器设定距离内物体反射波的方式,从而判断在设定距离内有无物体通过。若被检测物体的检测面为平面时,则可检测透明体。若被检测物体相对传感器

51、的检测面为倾斜时,则有时不能检测到被测物体。若被检测物体不是平面形状,实际使用超声波传感器时一定要确认是否能检测到被测物体。第三、限定范围式超声波传感器的检测方式在距离设定范围内放置的反射板碰到发送的超声波束时,则被检测物体遮挡反射板的正常反射波,若检测到反射板的反射波衰减或遮挡情况,就能判断有无物体通过。另外,检测范围也可以是由距离切换开关设定的范围。第四、回归反射式超声波传感器的检测方式回归反射式超声波传感器的检测方式与穿透超声波传感器的相同,主要用于发送器设置与布线困难的场合。若反射面为固定的平面物体,则可用作回归反射式超声波传感器的反射板。另外,光电传感器所用的反射板同样也可以用于这种

52、超声波传感器。这种超声波传感器可用脉冲市制的超声波替代光电传感器的光,因此,可检测透明的物体。利用超声波的传播速度比光速慢的特点,调整用门信号控制被测物体反射的超声波的检测时间,可以构成限定距离式与限定范围式超声波传感器。4.2.4 超声波传感器系统的构成超声波传感器系统由发送器、接收器、控制部分以及电源部分构成,如图4-5所示。发送器常使用直径为15mm左右的陶瓷振子,将陶瓷振子的电振动能量转换为超声波能量并向空中辐射。除穿透式超声波传感器外,用作发送器的陶瓷振子也可用作接收器,陶瓷振子接收到超声波产生机械振动,将其变换为电能量,作为传感器接收器的输出,从而对发送的超声波进行检测。图4-5

53、超声波传感器系统的构成控制部分判断接收器的接收信号的大小或有无,作为超声波传感器的控制输出。对于限定范围式超声波传感器,通过控制距离调整回路的门信号,可以接收到任意距离的反射波。另外,通过改变门信号的时间或宽度,可以自由改变检测物体的范围。超声波传感器的电源常由外部供电,一般为直流电压,电压范围为1224V±10%,再经传感器内部稳压电路变为稳定电压供传感器工作。超声波传感器系统中关键电路是超声波发生电路和超声波接收电路。可有多种方法产生超声波,其中最简单的方法就是用直接敲击超声波振子,但这种方法需要人参与,因而是不能持久的,也是不可取的。为此,在实际中采用电路的方法产生超声波,根据

54、使用目的的不同来选用其振荡电路4。4.3 系统软件结构在系统硬件构架了超声波测距的基本功能之后,系统软件所实现的功能主要是针对系统功能的实现及数据的处理和应用。根据以上所述系统硬件设计和所完成的功能,系统软件需要实现以下功能:第一、 信号控制在系统硬件中,已经完成了发射电路、接收电路、显示电路等的设计。在系统软件中,要完成增益控制信号、门控信号、发射脉冲信号、峰值采集信号、远近控制信号的时序及输出。第二、 数据存储为了得到发射信号与接收回波间的时间差,要读出此刻计数器的计数值,然后存储在RAM中,而且每次发射周期的开始,需要对计数器清零,以备后续处理。第三、 信号处理RAM中存储的计数值并不能

55、作为距离值直接显示输出,因为计数值与实际的距离值之间转换公式为:S=0.5*V*T=0.5*V*(Tr*N)其中,T为发射信号到接收之间经历的时间,Tr为方波信号作为计数脉冲时计数器的时间分辨率,N为计数器的值。在这个部分中,信号处理包括计数值与距离值换算,二进制与十进制转换5。第四、 数据传输与显示经软件处理得到的距离送显示输出,用三位LED表示。由于采用了单片机AT89C51并考虑整个系统的控制流程,整个系统软件都有AT89C51系列单片机汇编语言实现。由于距离值的得出及显示是在中断子程序中完成的,因此在初始化发射程序后进入中断响应的等待。在中断响应之后,原始数据经计数值与距离值换算子程序

56、,二进制与十进制转换子程序后显示输出。整个系统软件功能的实现可以分为主程序、中断服务程序几个主要部分。 主程序主程序是单片机程序的主体,整个单片机系统软件的功能的实现都是在其中完成的,在此过程中主程序调用了子程序及中断服务程序。程序首先完成初始化过程,然后是一个重复的控制发射信号的过程,即调用发射子程序几遍,而且每次发射周期结束都会判断在发射信号后延时等待的过程中是否发生了中断,即是否有回波产生来判断程序的流程。流程图如图4-6所示。开始单片机初始化定时子程序有回波吗?外部中断子程序定时程序入口定时器初始化发射超声波三方向是否发射完?停止发射返回NYYN图4-6 主程序流程图第一、40KHz脉冲的产生与超声波的发射在脉冲产生前先对定时器/计数器T0进行初始化,在这里选择的是工作方式1定时器模式,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论