版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.3.2 2.3.2 双曲线简单的几何性质双曲线简单的几何性质 2、对称性、对称性 一、研究双曲线一、研究双曲线 的简单几何性质的简单几何性质) 0, 0( 12222babyax1、范围、范围axaxaxax, 12222即关于关于x轴、轴、y轴和原点都是对称轴和原点都是对称。x轴、轴、y轴是双曲线的对称轴,原点是对称中心,轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的又叫做双曲线的中心中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)课堂新授课堂新授 3、顶点、顶点(1)双曲线与对称轴的交点,叫做双曲线的)双曲线与对称轴的交点,叫做双曲线的顶点顶点xyo-b1B2Bb
2、1A2A-aa12(,0)( ,0)AaA a顶点是、只有两个!如图,线段如图,线段 叫做双曲线叫做双曲线的实轴,它的长为的实轴,它的长为2a,a叫做叫做实半轴长;线段实半轴长;线段 叫做双叫做双曲线的虚轴,它的长为曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长叫做双曲线的虚半轴长2A1A2B1B(2)实轴与虚轴等长的双曲线实轴与虚轴等长的双曲线叫叫等轴双曲线等轴双曲线(3))0(22mmyxM(x,y)4、渐近线、渐近线1A2A1B2BN(x,y)xyoxaby xaby abxabybabyax的渐近线为双曲线)0, 0( 12222(1)的渐近线为等轴双曲线)0(22mmyx(2)xy
3、利用渐近线可以较准确的利用渐近线可以较准确的画出双曲线的草图画出双曲线的草图(3)5、离心率、离心率双曲线的叫做的比双曲线的焦距与实轴长,ace 离心率。e 1e是表示双曲线开口大小的一个量,e越大开口越大(1)定义:)定义:(2)e e的范围的范围:ace 222bac二四个参数中,知二可求、在ecba(4)等轴双曲线的离心率等轴双曲线的离心率e= ?2( 5 )的双曲线是等轴双曲线离心率2e例例1 :求双曲线求双曲线的实半轴长的实半轴长,虚半轴长虚半轴长,焦点坐标焦点坐标,离心率离心率.渐近线方程。渐近线方程。分析:把方程化为标准方程分析:把方程化为标准方程14416922 xy13422
4、22 xy例题讲解例题讲解 .4516线和焦点坐标程,并且求出它的渐近出双曲线的方轴上,中心在原点,写焦点在,离心率离是已知双曲线顶点间的距xe 例例2:ax或ax ay ay或)0 ,( a), 0(axaby xbay ace)(222bac其中关于关于坐标坐标轴和轴和原点原点都对都对称称性性质质双曲线双曲线) 0, 0(12222babyax) 0, 0(12222babxay范围范围对称对称 性性 顶点顶点 渐近渐近 线线离心离心 率率图象图象例例3 :求下列双曲线的标准方程:求下列双曲线的标准方程:法二:法二:设双曲线方程为设双曲线方程为221164xykk 16040kk 且且22
5、1128xy 双曲线方程为双曲线方程为22(3 2)21164kk ,解之得解之得k=4,12022kykx法一法一: : 直接设标准方程直接设标准方程, ,运用待定系数法运用待定系数法考虑考虑.(.(一般要分类讨论一般要分类讨论) ) 解解: :双曲线双曲线221916xy 的渐近线为的渐近线为43yx , ,令令 x= =- -3,3,y= =4,4,因因2 34 , , 故点故点( 3,2 3) 在射线在射线43yx (x0 0)及)及 x 轴负半轴之间轴负半轴之间, , 双曲线焦点在双曲线焦点在 x 轴上轴上, ,设双曲线方程为设双曲线方程为22221xyab( (a0 0, ,b0
6、0) ), , 222243( 3)(2 3)1baab 解之得解之得22944ab , , 双曲线方程为双曲线方程为221944xy 法二:法二:巧设方程巧设方程,运用待定系数法运用待定系数法.设双曲线方程为设双曲线方程为 ,22(0)916xy 22( 3)(2 3)916 14 221944双曲线的方程为xy “共渐近线共渐近线”的双曲线的应用的双曲线的应用222222221(0)xyabxyab 与共渐近线的双曲线系方程为, 为参数 ,0表示焦点在表示焦点在x轴上的双曲线;轴上的双曲线;0 0, ,b0 0) ), , 222243( 3)(2 3)1baab 解之得解之得22944a
7、b , , 双曲线方程为双曲线方程为221944xy 法二:法二:巧设方程巧设方程,运用待定系数法运用待定系数法.设双曲线方程为设双曲线方程为 ,22(0)916xy 22( 3)(2 3)916 14 221944双曲线的方程为xy 1、“共渐近线共渐近线”的双曲线的双曲线222222221(0)xyxyabab 与共渐近线的双曲线系方程为, 为参数 ,0表示焦点在表示焦点在x轴上的双曲线;轴上的双曲线;0表示焦点在表示焦点在y轴上的双曲线。轴上的双曲线。2、“共焦点共焦点”的双曲线的双曲线(1)与椭圆)与椭圆 有共同焦点的双曲线方程表有共同焦点的双曲线方程表 示为示为22221(0)xya
8、bab2222221().xybaab(2)与双曲线)与双曲线 有共同焦点的双曲线方有共同焦点的双曲线方程表示为程表示为22221(0,0)xyabab2222221()xybaab2.3.2 2.3.2 双曲线简单的几何性质双曲线简单的几何性质 ( (二二) )关于关于x轴、轴、y轴、原点对称轴、原点对称图形图形方程方程范围范围对称性对称性顶点顶点离心率离心率yxOA2B2A1B1.F1F2yB2A1A2 B1 xO.F2F1)0( 1babyax2 22 22 22 2bybaxa A1(- a,0),),A2(a,0)B1(0,-b),),B2(0,b)) 10( eaceF1(-c,0
9、) F2(c,0)F1(-c,0)F2(c,0),b(abyax00 1 2 22 22 22 2Ryaxax, 或或关于关于x轴、轴、y轴、原点对称轴、原点对称A1(- a,0),),A2(a,0)) 1( eace渐进线渐进线无无xaby关于关于x轴、轴、y轴、原点对称轴、原点对称图形图形方程方程范围范围对称性对称性顶点顶点离心率离心率)0( 1babyax2 22 22 22 2A1(- a,0),),A2(a,0)A1(0,-a),),A2(0,a)),b(abxay00 1 2 22 22 22 2Rxayay, 或或关于关于x轴、轴、y轴、原点对称轴、原点对称) 1( eace渐进
10、线渐进线xbay.yB2A1A2 B1 xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)Ryaxax, 或或) 1( eacexaby椭圆与直线的位置关系及判断方法椭圆与直线的位置关系及判断方法判断方法判断方法0(1)联立方程组)联立方程组(2)消去一个未知数)消去一个未知数(3)复习:相离相切相交一、一、直线与双曲线的位置关系直线与双曲线的位置关系1) 位置关系种类位置关系种类XYO种类种类:相离相离;相切相切;相交相交(0个交点,一个交点,个交点,一个交点,一个交点或一个交点或两个交点两个交点)2)2)位置关系与交点个数位置关系与交
11、点个数XYOXYO相离相离:0:0个交点个交点相交相交:一个交点一个交点相交相交:两个交点两个交点相切相切:一个交点一个交点例例.已知直线已知直线y=kx-1与双曲线与双曲线x2-y2=4,试讨论实数试讨论实数k的取值范围的取值范围,使直线与双曲线相交?相切?相离?使直线与双曲线相交?相切?相离?3)判断直线与双曲线位置关系的操作程序判断直线与双曲线位置关系的操作程序把直线方程代入双曲线方程把直线方程代入双曲线方程得到一元一次方程得到一元一次方程得到一元二次方程得到一元二次方程直线与双曲线的直线与双曲线的渐进线平行渐进线平行相交(一个交点)相交(一个交点) 计计 算算 判判 别别 式式0=00
12、 直线与双曲线相交(两个交点)直线与双曲线相交(两个交点) =0 直线与双曲线相切直线与双曲线相切 0 直线与双曲线相离直线与双曲线相离相切一点相切一点: =0相相 离离: 0 注注:相交:两点相交:两点: 0 同侧:同侧: 0 异侧异侧: 0 一点一点: 直线与渐进线平行直线与渐进线平行12xx12xx特别注意直线与双曲线的特别注意直线与双曲线的位置关系中:位置关系中:一解不一定相切,相交不一定一解不一定相切,相交不一定两解,两解不一定同支两解,两解不一定同支例例.已知直线已知直线y=kx-1与双曲线与双曲线x2-y2=4,试讨论实数试讨论实数k的取的取值范围值范围,使直线与双曲线使直线与双
13、曲线(1)没有公共点没有公共点; (2)有两个公共点有两个公共点;(3)只有一个公共点只有一个公共点; (4)交于异支两点;交于异支两点;(5)与左支交于两点与左支交于两点.(3)k=1,或,或k= ;52(4)-1k1 ;(1)k 或k ;525252(2) k ;52125- k1 k且且1.过点过点P(1,1)与双曲线与双曲线 只有只有共有共有_条条. 变题变题:将点将点P(1,1)改为改为1.A(3,4) 2.B(3,0)3.C(4,0)4.D(0,0).答案又是怎样的答案又是怎样的?4116922yx1.两条两条;2.三条三条;3.两条两条;4.零条零条.交点的交点的一个一个直线直线
14、XYO(1,1)。2.双曲线双曲线x2-y2=1的左焦点为的左焦点为F,点点P为左支下半支上任意一点为左支下半支上任意一点(异于顶点异于顶点),则直线则直线PF的斜率的变化范围是的斜率的变化范围是_01,3.过原点与双曲线过原点与双曲线 交于两点的直线斜率的交于两点的直线斜率的取值范围是取值范围是 13422yx32 3,2例例4、如图,过双曲线、如图,过双曲线 的右焦点的右焦点倾斜角为倾斜角为 的直线交双曲线于的直线交双曲线于A,B两点,求两点,求|AB|。22136xy2,F30三、三、弦长问题弦长问题练习练习: : 1.1.过双曲线过双曲线116922yx的左焦点的左焦点 F1 1作倾角
15、为作倾角为4的直线与双曲线的直线与双曲线 交于交于A A、B B两点,则两点,则| |ABAB|=|= . . 2.2.双曲线的两条渐进线方程为双曲线的两条渐进线方程为20 xy,且截直线,且截直线30 xy所得弦长为所得弦长为8 33,则该双曲线的方程为(,则该双曲线的方程为( ) (A)(A)2212xy (B)(B)2214yx (C)(C)2212yx (D)(D)2214xy 1927韦达定理与点差法韦达定理与点差法例例.已知双曲线方程为已知双曲线方程为3x2-y2=3, 求:求: (1)以以2为斜率的弦的中点轨迹;为斜率的弦的中点轨迹; (2)过定点过定点B(2,1)的弦的中点轨迹
16、;的弦的中点轨迹; (3)以定点以定点B(2,1)为中点的弦所在为中点的弦所在的直线方程的直线方程. (4)以定点以定点(1,1)为中点的弦存在吗?为中点的弦存在吗?说明理由;说明理由;例.2 22 2y y给给定定双双曲曲线线x-= 1,x-= 1,过过点点A(1,1)A(1,1)能能否否作作直直线线L L2 2使使L L与与所所给给双双曲曲线线交交于于两两点点P,Q,P,Q,且且A A是是线线段段PQPQ的的中中点点? ?说说明明理理由由. .11221122解 : 假设存在P(x ,y ),Q(x ,y )为直线L上的两点,解 : 假设存在P(x ,y ),Q(x ,y )为直线L上的两
17、点,且PQ的中点为A,则有 :且PQ的中点为A,则有 : 2 22 21 11 12 22 22 22 2y yx-= 1x-= 12 2y yx-= 1x-= 12 212121212121212122(x + x )(x - x ) = (y + y )(y - y )2(x + x )(x - x ) = (y + y )(y - y ),即方程为12121212y - yy - y= 2k = 2L: y - 1 = 2(x - 1)= 2k = 2L: y - 1 = 2(x - 1)x - xx - x2 揶 V2 22 22 2y yx -= 1x -= 1x - 4x + 3
18、= 0 0 x - 4x + 3 = 00,0,原点原点O O(0 0,0 0)在以)在以ABAB为直径的圆上,为直径的圆上, OAOB OAOB,即,即x x1 1x x2 2+y+y1 1y y2 2=0,=0,即即x x1 1x x2 2+(ax+(ax1 1+1)(ax+1)(ax2 2+1)=0, +1)=0, (a(a2 2+1) x+1) x1 1x x2 2 +a(x +a(x1 1+x+x2 2 )+1=0, )+1=0,解得解得a=a=1.1. (1)当当a为何值时,以为何值时,以AB为直径的圆过坐标原点;为直径的圆过坐标原点;1212222a2xx,x x3a3a 22222a (a +1) +a+1=03a3a (2)是否存在这样的实数是否存在这样的实数a,使使A、B关于关于y=2x对称,对称, 若存在,求若存在,求a;若不存在,说明理由若不存在,说明理由.3、设双曲线、设双曲线C: 与直线与直线相交于两个不同的点相交于两个不同的点A、B。(1)求双曲线)求双曲线C的离心率的离心率e的取值范围。的取值范围。(2)设直线)设直线l与与y轴的交点为轴的交点为P,且,且 求求a的值。的值。2221(0)xyaa:1l xy5,12PAPB 1317, 06028912,.12125.1212172222222222aaaaxaaxaax所以由得消去所以4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培养物流人才的融合创新策略与实施方案
- 2024年沪科版四年级英语上册阶段测试试卷
- 2024模具行业节能减排技术创新与应用合同3篇
- 2025年粤教版八年级化学下册阶段测试试卷
- 2025年外研版三年级起点高三物理上册阶段测试试卷含答案
- 2025版智能压路机销售与智能控制系统合同3篇
- 唐朝-盛世唐音:历史长河中的璀璨篇章 微课说课稿-2024-2025学年高一上学期统编版(2019)必修中外历史纲要上001
- 2024渣土运输项目承包合作协议书3篇
- 2025年湘教新版四年级语文上册阶段测试试卷含答案
- 2025版上海离婚协议书模板定制与子女抚养权协议服务合同3篇
- 中餐厅主题宴会设计方案
- 缓冲罐操作规程
- 幼儿教育-个别幼儿教育记录表.文档
- (高清版)DZT 0338.4-2020 固体矿产资源量估算规程 第4部分 SD法
- 妇产科学 (安康职业技术学院)智慧树知到期末考试答案2024年
- 供电所营销安全管理措施
- 水闸闸门运行方案
- 消费型股东招募计划书
- 2022-2023学年江苏省连云港市九年级(上)期末数学试卷(含详细答案解析)
- 会计事务所述职报告
- 2022年江苏普通高中学业水平选择性考试政治真题及答案
评论
0/150
提交评论