等腰三角形的性质教案及教学设计说明_第1页
等腰三角形的性质教案及教学设计说明_第2页
等腰三角形的性质教案及教学设计说明_第3页
等腰三角形的性质教案及教学设计说明_第4页
等腰三角形的性质教案及教学设计说明_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课题等腰三角形的性质教材上海教育出版社九年义务教育课本数学七年级第二学期内容第十四章三角形14.5等腰三角形教学目标(1)通过观察,操作,说理等活动,自主探究等腰三角形的性质,掌握并 能够应用等腰三角形的性质解决简单问题.(2)体会实验归纳和逻辑推理这两种研究方法的区别与联系.(3)学习分类讨论以解决问题的数学思想方法,感悟添加辅助线在解题中 的应用,提高逻辑思维能力和解决问题的能力.(4)在开放的互动中体验数学发现的快乐.教学重点探究等腰三角形的性质,运用等腰三角形的性质解决简单问题.教学难点等腰三角形“三线合一”性质的灵活应用教学过程教学环节教师活动学生活动设计意图一、在学生观察生活中的一

2、些建筑图片学生观察一组图以生活中创设情景时,问:片,回答问题并在老常见的建筑特引入课题1.这些图片中抽象出的平囿儿何图师引导下说出自己的色图片感知等形,它们有什么共同特点?感性认识.腰三角形的对2 .什么是等腰三角形?称性,唤起学生介绍在等腰三角形中,相等的两边叫兴趣及探索欲做吧另一边叫做底边,两腰的夹角叫做望;知道等腰三顶角,腰和底边的夹角叫做底用.角形各元素名称,为时一步的学习和探究活动做准备.探索新知渐进升华引导学生猜测对称轴在哪里?发现:等腰三角 形是轴对称图形.猜测对称轴可能 是底边上的中线所在 的直线或底边上的高 所在的直线或顶角的 平分线所在的直线.通过翻折或测量 发现等腰三角形

3、底角 相等.与老师一起完成翻 折叠合的说理过程.对自己的猜测 作进一步的推理证 实.开放地从添加顶 角平分线或底边上的 高或底边上的中线, 利用全等三角形证明 对应角/ B=/C.得出 等腰三角形底角相等 的性质并规范符号语 言的表示.发现:等腰三角 形的底边上的中线、 底边上的高和顶角的 平分线互相重合在原有证明的基 础上,加以说理,得 出结论.小结等腰三角形 的三条性质.教师引导, 在已有的等腰 三角形是轴对 称图形感性认 知之下,从角是 轴对称图形的 认知基础,以顶 角的平分线进 行翻折,合乎思 维逻辑.教师与学 生一起探究,经 历观察-操作-说 理等活动,感受 几何的研究方 法,使学生

4、逻辑 思维能力得到 较好的发展. (添加底边上 的高,证明有困 难时,教师作简 要说明).让学生豁 然开朗:三线合 一是对等腰三 角形而言的;还 需注意的是顶 角平分线、底边 上的高和底边 上的中线合一.我们之所以说等腰三角形美观,主要指它的对称美,具体是指那一种对称呢?请学生观察手中的等腰三角形,问: 除了腰相等以外,还可以发现哪些相等的 量?问:你是怎样发现的呢?利用几何画板演示,引导从顶角平分 线进行翻折说理.引导学生用不同的方法 (辅助线不同的添 法)都可以得出等腰三角形底角相等的结 论.得出:等腰三角形的两个底角相等.简称:等边对等角.符号语言:: AB=AC (已知),/B=/C

5、(等边对等角).问题:从上述三种证明方法中,还可以得到什么新的发现?如何证明你的发现?点拨:证明三条线重合有难度,可证明一 条线与其它两条线重合,引导学生利用现 成的结论继续证明.得出:等腰三角形三线合一.并由三线合一的证明可知,之前几位同学对等腰三角形对称轴的猜测都正确.用符号语言表示这一性质.用几何画板演示让学生发现不等边三角形没有这样的性质, 强调三线合一的 内涵.二、利用新知巩固应用例1如图 ABC个屋顶的平面本意 图,已知屋椽 AB=AC ,立柱 AD ± BC, 底角/ B=40° ,梁长BC=10米,则顶架回答并口述理由.对新获得 的认知进行应 用,从而巩固新

6、 知.上/ CAD=度,BD=米.ABc一,、一一一一D , 一 一例 2 (1)已知:在 ABC 中,AB = AC ,让学生感并且其中一个角为70。,那么其它角的度回答、口述理由,学受用等腰三角数分别为.习分类讨论.形的性质解决(2)已知:在 ABC 中,AB = AC , 并且其中一个角为90。,那么其它角的度一些几何问题 的优越性.并学数分别为.习分类讨论的(3)已知:在 ABC 中,AB = AC , 并且其中一个角为100。,那么其它角的开放找出多项等量解题方法.度数分别为.关系,并说出依据,例3如图,在 ABC中,AB=AC , D,对BD=CE结论尝试从几种方E在BC上,AD=

7、AE ,你还能找到哪些等用几种方法进行书面法的证明中让证明.学生感知“三线 合一”在解决问BDEC题中的应用.四、这节课你有那些收获?还有什么问题谈收获,回顾一通过小结,自我反思吗?节课的内容,交流感梳理一节课的总结收获受和体会.收获,培养学生的归纳、反思能力.五、布置作业1、用两种方法证明等腰三角形底角相等.(用符号语言说明)2、课本P107一第3题巩固练习巩固练习, 课的延伸.为下 节课做情景准3、练习册习题14.5节备.教学设计说明一、教材分析1、地位与作用等腰三角形对于学生学习和研究图形的轴对称性具有重要意义,它的图形直观地显示出轴对称的特征,它所具有的性质简明地体现出轴对称的内涵;

8、由等腰 三角形揭示的“等边对等角”和“等角对等边”的几何事实,是边与角相互联系和转化的基本依据,是平面几何体系中的支柱性定理之一; 本节内容起到了重要的承上启下作用,既用它作为运用全等三角形的判定和性质进行推理论证的载体, 又由此对三角形的研究呈现出从特殊到一般的过程,随着等腰三角形性质的学习和研究的深入,学生的逻辑推理的能力将有所增强;实验与论证相辅相成,帮助学生从实验几何向论证几何过渡.2、学情在认知基础上,本节课是在学习全等三角形性质以及判定之后,学生对等腰三角形已有直观认识并知道等腰三角形是轴对称图形,由此来研究等腰三角形的性质 .在学习心理上,学生求知欲强,想象力丰富,乐于参加活动,

9、但也存在注意力易分散等不足,因此在教法上,既要充分发挥学生的主体作用,让学生自己观察、大胆猜想、严密论证,又要适时发挥教师的引导、点拨作用.通过师生之间,生生之间的融洽合作,使学习活动变得生动有序.在分析教材和学情的基础上,本节课的教学作了适当的调整,考虑到学生已学过轴对称图形,并且知道等腰三角形是轴对称图形,所以将 “等腰三角形是轴对称图形”这一性质提前到第一个性质进行研究,让学生从已有的认知基础上慢慢打开等腰三角形性质的探究之门.二、教学过程设计本节课引导学生从已有的认知和生活经验出发,通过情景创设以及对教学内容的“问题化”组织, 将教学内容转化为符合学生心理特点的问题情境,提出开放性的问

10、题让学生进行合作探索,激发学生的学习兴趣,促进学生的自主探究与合作交流. 经历实验操作猜想归纳说理证实的数学研究过程,体验知识的形成与应用,感受数学研究的一般方法.现对教学过程具体说明如下:(一)创设情景引入课题本节课的设计从生活中常见的含有等腰三角形的建筑图片这一情景引入课题等腰三角形的性质,让学生感到数学来源于生活,也激起了学生的求知欲望.(二)探索新知渐进升华1、 基于学生对等腰三角形是轴对称图形的直观认识,引导学生猜测,对称轴可能是顶角平分线所在的直线、底边中线所在的直线或底边高所在的直线,而这些猜测将在接下来的学习探究中得到证实.2、 通过学生经历操作实验 归纳猜想 说理证实的数学研

11、究过程,探究出等腰三角形等边对等角的特殊性质,这个过程中,学生的学习活动在操作实验的基础上, 过渡到逻辑推理,促进学生的几何认知水平得到新的发展,同时教学中注意数学思想方法的渗透,例如添加辅助线.3、在“等边对等角”的论证过程中,有三种辅助线的添法,由此猜想到这三条辅助线是重合的,并进一步证实,同时在教学中注意数学思想方法的渗透(如何证明三条线重合)在这一过程中也证实了对称轴的猜测.(三)利用新知巩固应用例 1:学生获得新的认知后,通过变式训练使学生能够利用所学等腰三角形的特殊性质解决一些简单的问题,在应用中感知等腰三角形性质的优越性.例2:体会分类讨论数学思想.并清楚等腰三角形底角与顶角的取

12、值范围.例3:学生讨论,寻找等量关系,并对其中一个等量关系进行证明,可用多种方法,如果用等腰三角形的性质来解决可大大简化.再次让学生感知等腰三角形性质的优越性.(四)自我反思总结收获通过学生的自我小结,培养学生的归纳能力,鼓励学生质疑反思.前几节课上有学生发现:自己手中的等腰三角形沿对称轴不断翻折下去始终会得到等腰三角形 .教师提醒其他同学观察自己手中的等腰三角形是否也存在此类情况?引导学生思考这位同学手中的等腰三角形有何特殊性?实际上是一个等腰直角三角形,教师准备了一个探究性问题适时地与学生探究,把课延续到课后.(五) 、布置作业作业的布置重视让不同层次的学生都能得到发展,并为下节课学习作情

13、景准备 .(课后 P107-3 的练习,学生用不同方法画出原来的三角形,那么是否一定是等腰三角形?作为下节课引入新课的情景)三、课后反思本节课把等腰三角形三个性质的探究顺序作了调整,意在学生原有认知基础上获得新知,更加符合学生的认知规律,充分调动学生思维,有效激发学生探究新知的积极性,从等腰三角形对称性研究到证明等腰三角形两底角相等;从翻折叠合到三种方法的符号语言说明,然后又顺理成章地收敛到三线合一,再对等腰三角形对称轴的猜测得以证实,水到渠成. 等腰三角形的三个性质一气呵成,既发展学生的逻辑思维能力,又激发学生思维的开放性. 在例题的处理上,如广找等量关系,鼓励用不同的方法证明两线段相等,发散学生的思维. 在教学过程中注重数学思想方法的渗透,如添加辅助线、证明三线合一,又如分类讨论方法的使用.尤其在课的结尾学生能够提出问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论