全国高中数学联赛分类解析-2006-2010立体几何(共5页)_第1页
全国高中数学联赛分类解析-2006-2010立体几何(共5页)_第2页
全国高中数学联赛分类解析-2006-2010立体几何(共5页)_第3页
全国高中数学联赛分类解析-2006-2010立体几何(共5页)_第4页
全国高中数学联赛分类解析-2006-2010立体几何(共5页)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上立体几何(06)4. 在直三棱柱中,. 已知与分别为 和的中点,与分别为线段和上的动点(不包括端点). 若,则线段的长度的取值范围为 A. B. C. D. 【答】 ( )4.【答】 ( A )【解】建立直角坐标系,以为坐标原点,为轴,为轴,为轴,则(),()。所以,。因为,所以,由此推出 。又,从而有 。(06)10. 底面半径为1cm的圆柱形容器里放有四个半径为cm的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm3.10. 【解】设四个实心铁球的球心为,其中为下层两球的球心,分别为四个球心在底面的射

2、影。则ABCD是一个边长为的正方形。所以注水高为。故应注水。(07)1. 如图,在正四棱锥PABCD中,APC=60°,则二面角APBC的平面角的余弦值为( B )A. B. C. D. 解:如图,在侧面PAB内,作AMPB,垂足为M。连结CM、AC,则AMC为二面角APBC的平面角。不妨设AB=2,则,斜高为,故,由此得。在AMC中,由余弦定理得。(07)9. 已知正方体ABCDA1B1C1D1的棱长为1,以顶点A为球心,为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于 。解:如图,球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点A所在的三个面上,即面AA1B

3、1B、面ABCD和面AA1D1D上;另一类在不过顶点A的三个面上,即面BB1C1C、面CC1D1D和面A1B1C1D1上。在面AA1B1B上,交线为弧EF且在过球心A的大圆上,因为,AA1=1,则。同理,所以,故弧EF的长为,而这样的弧共有三条。在面BB1C1C上,交线为弧FG且在距球心为1的平面与球面相交所得的小圆上,此时,小圆的圆心为B,半径为,所以弧FG的长为。这样的弧也有三条。于是,所得的曲线长为。(08)4若三个棱长均为整数(单位:cm)的正方体的表面积之和为564 cm2,则这三个正方体的体积之和为 ( A )A. 764 cm3或586 cm3 B. 764 cm3 C. 586

4、 cm3或564 cm3 D. 586 cm3解 设这三个正方体的棱长分别为,则有,不妨设,从而,故只能取9,8,7,6若,则,易知,得一组解若,则,但,从而或5若,则无解,若,则无解此时无解若,则,有唯一解,若,则,此时,故,但,故,此时无解综上,共有两组解或体积为cm3或cm3(08)12一个半径为1的小球在一个内壁棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是 解 如答12图1,考虑小球挤在一个角时的情况,记小球半径为,作平面/平面,与小球相切于点,则小球球心为正四面体的中心,垂足为的中心因答12图1 ,故,从而记此时小球与面的切点为,连接,则考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如答12图2记正四面体的棱长为,过作于答12图2 因,有,故小三角形的边长小球与面不能接触到的部分的面积为(如答12图2中阴影部分) 又,所以由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为1. (10)正三棱柱的9条棱长都相等,是的中点,二面角,则 .解一:如图,以所在直线为轴,线段中点为原点,所在直线为轴,建立空间直角坐标系.设正三棱柱的棱长为2,则,从而,.设分别与平面、平面垂直的向量是、,则由此可设 ,所以,即.所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论