版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章思考题1 .什么是连续介质为何要做这种假定2 .流体的粘度与流体的压力有关吗3 .流体的重度,比重和密度之间是怎样的关系4 .什么是理想流体什么是粘性流体它们有什么区别5 .流体的动力粘性系数与运动粘性系数有什么不同它们之间有什么关系6 .液体和气体的粘性系数然随温度的变化规律有何不同为什么7 .牛顿流体是怎样的流体非牛顿流体有哪些它们之间有什么区别8 .为什么将压力和切应力称为表面力而又将惯性力和重力称为质量力9 .怎样理解静止流体或理想流体中一点处的压力是一个标量流体静压强有何特性10 .气体和液体在压缩性方面有何不同习题1.海面下8km处水的压力为81.7*06N/m2,若海面水的
2、密度p=1025kg/m2J力为1.01*05N/m2,平均体积弹性模量为2.34*09N/m2,试求水下8km处的密度.2 .如图1-12所示,半径为a的圆管内流体作直线单向流动,已知管道横截面上的流体速度分布为其中umax=const,求:=0,=和r=a处的流体切应力,并指出切应力的方向.这里流体粘性系数为.3 .如图1-13所示的旋转粘度计,同心轴和筒中间注入牛顿型流体,轴的直径为D,筒与轴之间的间隙S很小.筒以等角速度旋转,且保持流体的温度不变.假定间隙中的流体作周向流动且速度为线性分布,设L很长,故底部摩擦影响可不计.若测得轴的扭矩为M,求流体的粘性系数.4 .如图1-14所示,一
3、平板在另一平板上作水平运动,其间充满厚度为S=2mm勺油,两平板平行.假定油膜内的速度分布为线性分布,粘性系数然=1.10M-5Ns/cm2,求单位面积上的粘性阻力.5 .有金属轴套在自重的作用下沿垂直轴下滑,轴与轴套之间充满p=900kg/m3,的润滑油.轴套内经d1=102mm,高h=250mm,重100N,轴的直径d2=100mm,试确定轴套等速下滑的速度.6 .如图1-15所示,牛顿型流体从一倾斜板流下,流层厚度为t,与空气接触的上表面阻力可忽略不计.在斜面上(倾角为。流体流动速度恒定,若流体的密度为p粘性系数为M求流层内的速度分布.7 .活塞直径为5cm,在气缸(直径为5.01cm)
4、内运动,当其间的润滑油温度由00C变到120C时,试确定活塞运动所需的力减少的百分比.设在0C时,然1=1.7X2Ns/m2,在120C时,然2=2X-30Ns/m2.8 .一飞轮回转半径为30cm,重500N,当其转速达到600r/min后,由于转轴与轴套之间的流体的粘性而使其转速减少1r/min.这里轴套长5cm,轴的直径为2cm,径向间隙为0.05cm,试确定流体的粘度.9 .试求常温下(20,一个大气压)使水的体积减少0.1%所需的压力,设Bp=4.8X80n2/N.10 .当压力增量A=5X104N/m2时,某种流体的密度增长0.02%,求此流体的体积弹性模量.第二章思考题1欧拉平衡
5、微分方程综合式可积分的条件是什么2何谓等压面等压面与质量力作用线之间的关系如何3何谓连通器原理工程上有何应用4压力p和总压力P有何不同如何计算静止流体中平板上的总压力和压力中心水箱中储有重度不同的两种流体,如图2-28所示.容器和测管都与大气相通,问测管1和2中的液面是否与o-o面平齐是高于还是低于o-o面两种流体的分界面是等压面吗静止流体(包括相对静止)中的水平面是等压面吗连通容器中的水平面是等压面吗7如图2-29所示的密闭水箱A,顶部自由液面的压力为p0,橡皮管连接容器B,水箱接有测压管1和2问:(1)1和2两测压管的水面是否平齐若平齐,pa=pb对吗(2)若将容器B提高一些,两测压管的水
6、面将如何变化p0的值是增加减少还是不变(3)若将容器B下降(测压管1和2均封闭)直至B中水面正好与C点平齐,问此时C点的压力为多少8何谓压力体它由哪几个面构成实压力体与虚压力体有何异同9如图2-30所示各AB段壁面均为二向曲面,试画出AB段上的压力体.10如图2-31所示水平台面上置放五个形状各异,但底面积相等的容器,若容器内的水深H均相等,试比较容器底面积上所受静水总压力的大小.11如图2-32所示形状各异,但面积相等的闸门,浸没在同一种液体中,试比较各闸门所受静水总压力的大小.12一个任意形状的物体处于静止流体中,若该物体的表面接触的流体压力处处相等,问其上的流体总压力为多少船舶的平衡条件
7、是什么船舶的漂浮状态通常有哪几种情况(绘出示意图)表征各种浮态的参数有哪几个根据静力平衡条件,列出各种浮态的平衡方程.习题1 .如图2-33所示的差动式比压计中的水银柱高h=0.03m,其余液体为水,容器A,B的中心位置高差H=1m,求A,B容器中心处的压力差.2 .如图2-34所示的容器底部有一圆孔,用金属球封闭,该球直径为5cm,圆孔的直径为3cm.求水作用于圆球上的总压力.3 .如图2-35所示,H=3m,a=450闸门宽为b=1m,求扇形闸门上所受静水总压力.设水的密度为1000kg/m3.4 .试确定图2-36所示的单位长圆柱体上所受静水总压力.分别按下列三种情况计算.H1=d,H2
8、=0;(2)H1=d/2,H2=0;(3)H1=d,H2=d/2.5 .如图2-37所示,当闸门关闭时,求水作用于闸门上合力对0点的力矩设丫=9802N/m3.6 .如图2-38所示,重度为9100N/m3的油液所充满的容器中的压力p由水银压力计读数h来确定,水银的重度为1.33M05N/m3,若压力不变,而使压力计下移至a点的位置.求压力计读数的变化量Ah.7 .如图2-39所示,矩形平板闸门,水压力经闸门的面板传到三条水平梁上,为使各横梁的负荷相等,试问应分别把它们置于距自由液面多深的地方已知闸门高4m,宽6m,水深H=3m.8 .如图2-40所示等腰三角形平面的一边水平(即与液面平行),
9、浸入重度为丫的流体中,三角形高为a,水平边宽b,水平边距自由液面为a,求作用于三角形上的静水总压力及压力中心.9 .求图2-41所示,d=4m的单位长圆柱体上的静水总压力.10 .船沿水平方向作匀加速直线运动,其液体舱的液面倾斜45°,求船的加速度.11 .某船从内河出海,吃水减少了20cm,接着在港口装了一些货物后吃水复又增加了15cm.设该船最初的排水量为100t,吃水线附近船的倾面为直壁,海水的密度为P3025kg/m3.问该船在港口装了多少货物12 .试证流体静止的必要条件是质量力必须满足式中为质量力.13 .如图2-42所示,矩形水箱高1.2m,长2m,在与水平面成30
10、176;的倾斜面上向上运动,加速度为4m/s2.试求箱内液面与水平面之间的倾角.14 .如图2-43所示,一细长直管,长L=20cm,与铅垂轴的夹角为8.0开口通大气,A处封死.管内盛满密度为p的均质流体.若管子绕Z轴作等角速度旋转,求截面A和B处流体质点的质量力的大小和方向.设流体相对管子是静止的.15 .直径为4m的圆板铅垂地浸入水中,上面与水面相切时,求作用于该板上的静水总压力及压力中心.160矩形闸门的位置与尺寸如图2-44所示,闸门上缘A处设有转轴,下缘连接较链,以备开闭.若忽略闸门自重及轴间摩擦力,求开启闸门所需的拉力T.(Ic2二)17 .如图3-45所示为一绕较链O转动的自动开
11、启式水闸(倾角a=60°雪水闸一侧的水深h1=2m,另一侧的水深h2=0.4m时,闸门自动开启,试求较链至水闸下端的距离x.18 .求图2-46所示封闭容器斜壁上的圆形闸门所受的静水总压力及作用点.已知闸门直径d=2m,a=1m,a=60,容器内水面的相对压强=98.1kN/m2.(Ic=)19 .一泄水装置如图2-47所示,泄水孔道直径1m,其上斜盖一椭圆形阀门,阀门上缘有一较链,泄水孔上缘距水面距离H=2m.若不计阀门重量及较链的摩擦力,试求开启阀门的力T.(Ic2=)第三章思考题拉格朗日法与欧拉法有何异同欧拉法中有哪两种加速度它与速度场的定常与否及均匀与否有什么关系如何理解欧拉
12、法求质点加速度时,其表达式中空间位置(x,y,z)是时间的函数陨星下坠时在天空中划过的白线是什么线流线有什么基本性质如何判断流线方向流线与轨迹线有何区别在同一流场中,同一时刻不同流体质点组成的曲线是否都是流线如果在运动过程中,每一流体质点的密度都保持不变,那么是否一定有和一条船在静水中作等速直线运动,观察者在什么坐标系下可以观察到定常运动船模在水池中试验,拖车拖带船模在静水中作等速直线运动.而船模在水槽中试验,则是船模固定不动(相对于地球),水槽中的水以均匀来流绕船模流动,试讨论这两种流动坐标系的选择及流动的定常或非定常性流场为有旋运动时,流体微团一定做圆周运动吗无旋运动时,流体微团一定做直线
13、运动吗11.流体微团的旋转角速度与刚体的旋转角速度有什么本质差别习题1 .已知流场的速度分布为,求:(1)流体的剪切变形角速度;点(3,1)处流体质点的加速度.2 .给定速度场,vz=0且令t=0时,r=a,0=b,=c.求流场的加速度.3 .已知平面流速度场为vx=1+2t,vy=3+4t,求:(1)流线方程;(2)t=0时经过点(0,0),(0,1),(0,-1)的三条流线方程;(3)t=0时经过点(0,0)的流体质点的迹线方程.4 .已知平面流动的速度分布为式中r为常数,求流线方程.5 .给定速度场vx=-ky,vy=kx,vz=w0.式中k,w0是常数.求通过x=a,y=b,z=c的流
14、线.6 .已知不可压缩液体平面流动的流速场为vx=xt+2yvy=xt2-yt求当t=1s时,点A(1,2)处液体质点的加速度(单位:m/s2).7 .已知流体中任一点的速度分量,由欧拉变数给出为vx=x+tvy=-y+tvz=0试求t=0时,通过点(-1,1)的流线.8 .已知流体的速度分布为vx=1-y,vy=t,求:t=1时过(0,0)点的流线及t=0时位于(0,0)点的质点轨迹.9 .给出流速场为,求:空间点(3,0,2)在t=1时的加速度.10 .已知空间不可压缩液体运动的两个流速分量为vx=10x,vy=-6y,试求:z方向上的流速分量的表达式流动是否为有旋运动11 .试证明下列不
15、可压缩均质流体运动中,哪些满足连续性方程,哪些不满足连续性方程.(1) vx=-kyvy=kxvz=0(2) vx=kxvy=-kyvz=0(3)(4) vx=ayvy=vg:vz=0(5) vx=4vy=vz=0(6) vx=1vy=2vr=k/r(k是不为零的常数)v0=0提示:在柱坐标系中,连续性微分方程为vr=0v0=K(k为零的常数)(9) vx=4xvy=c(10) vx=4xyvy=012 .给定速度场vx=ax,vy=ay,vz=-2az,式中a为常数,求:(1)线变形速率分量,剪切角速度分量,体积膨胀率;(2)该流场是否为无旋场,若无旋,写出其速度势函数.13 .设有从坐标原
16、点引出的径向线上流速分布为vr=4/r,试证明通过圆心为原点的所有圆周上的流量都相等.14 .已知流场的速度分布为,该流场是否满足不可压缩流体的连续性方程15 .在不可压缩流体的三元流场中,已知速度场vx=x2+y2+x+y+2和vy=y2+2yz,试求vz的表达式.16 .下列各流场中哪几个满足连续性条件,它们是有旋流动还是无旋流动其中k为常数.vx=kvy=0(2)vx=vy=vx=x2+2xyvy=y2+2xy(4)vx=y+zvy=z+xvz=x+y17 .确定下列各流场是否连续是否有旋式中k为常数(1)vr=0v0=kr(2)vr=-k/rv0=0(3)vr=v0-2r.18 .已知
17、有旋流动的速度场为vx=x+y,vy=y+z,vz=x2+y2+z2,求过点(2,2,2)的角速度分目里.19 .已知速度场vx=2y+3z,vy=2z+3x,vz=2x+3y,求流体微团的角速度.20 .证明平面不可压缩流场vx=2xy+x,和vy=x2-y2-y满足连续性方程,是有势流并求出速度势函数.21 .在管道壁上有一面积为1m2的孔口,如图3-25所示,求孔口处出流的平均速度U,其它数据如图所示.22 .已知流场中势函数小事验证该函数在二维和三维流动中是否满足拉普拉斯方程.23 .已知势函数小=ln(x2+y2)1/2除原点外处处无旋,求速度场.第四章思考题1 .杆欧拉平衡微分方程
18、与欧拉运动微分方程有何关系2 .拉格朗日积分和伯努利积分各自适用什么条件3 .拉格朗日积分中的通用常数与柏努利方程中的流线常数有何差别4 .叙述柏努利方程的几彳意义和物理意义.5 .说明柏努利方程反映了能量的何种关系6 .为什么应用柏努利方程时,其中的位置水头可以任意选取基准面来计算7 .在推导柏努利方程时,没有考虑外界对流线上的流体质点做功或输入(出)能量,若实I问题中有能量的输入(出),解柏努利方程时将如何处理8 .总压力,驻点压力,静压力,动压力以及伯努利常数的含义是什么9 .在不同液体或气体的界面上是否可将压力视为常数为什么10 .在求解柏努利方程时,管道出口流入大气中或者流入静止流体
19、中,出口处的压力怎样确定而静止流体流入管道时,管道进口处的压力一般是否为已知量11如图4-20所示虹吸管,不计损失,流动定常.问:(1)管子出口处(2-2截面)的静压为多少(2)哪段管路为低压向高压的流动此时伯努利方程中的三项能头是如何变化的(3)S处的压力是高于大气压力还是低于大气压力若S处管子破裂流动将如何12 .应用积分形式动量方程时,因动量是矢量,其方向如何确定在计算合外力时,为什么通常压力项只计相对压力而不计绝对压力13 .积分形式动量方程是适合于控制体的,其控制体内流场是否要求流动无旋无粘习题1 .如图4-21所示的管流,直径d=30cm,求管内流速v.2 .如图4-22所示的水银
20、比压计与一水平放置的流量计相连接.现读得比压计中水银面高差Ah=800mm已知d1=250mm,d2=100mm,流动定常,不计损失,求通过的体积流量(管内流体为水).3 .用图4-23所示的水银比压计测油速.已知油的比重为0.8,水银比重为13.6,h=60mm,求管内油的流动速度.设流动定常,不计粘性影响.4 .如图4-24所示的喷雾器,活塞以v等速运动,喉部处空气造成低压,将液体吸入然后向大气喷雾.若空气密度为p液体密度为p假定流动为不可压缩,理想定常流动,求能喷雾的吸入高度h.5 .如图4-25所示的不可压缩流体在半径为R的管中流动,入口处即截面1处横断面上的流速是均匀的,其值为v,下
21、游截面2处,流动为u=umax表示的速度分布,假定是使截面1-2之间流动减速的平均壁面剪应力.试求以umax,p,L,R?口表示的压力降.6 .如图4-26所示,设宽度为b=5cm,厚度为单位厚度的水平射流射向直立固定的平板.已知v0=20m/s,不计摩擦,流动定常,周围都是大气压力.求平板所受射流的冲击力.7 .有一股射流以速度20m/s从直径为5cm的喷嘴向外喷水.设喷流方向如图4-27所示的水平面位置,流体密度为p=1000kg/m球使船保持稳定的力.8 .如图4-28所示,摩托艇在河中以9m/s的速度(相对岸边)逆流而上.河中水流速度为9 .5m/s.该艇用的喷水推进装置,由船首进水.
22、船尾排水.若射流相对艇的速度为18m/s,流量为0.15m3/s,问产生的推力为多少10 如图4-29所示为一突然扩大的管道,d1=50mm,d2=100mm,所通过的流量Q=16m3/h的水.在截面突变处置一差压计,其中充满丫=15689N/m3的液体,读得液面高差h=173mm,试求管径突然扩大的阻力系数.11 .鱼雷在水下5m深处以50km/h的速度运动,据相对T*原理,可认为鱼雷不动,流体从无穷远处以流速50km/h流过鱼雷.(1)若流体流过鱼雷表面时,其最大速度为无穷远处速度的1.5倍(如图4-30所示的A点处),求鱼雷A点处的压力.(2)设水温为15C,产生空泡的压力为2.33kN
23、/m2,求鱼雷产生空泡时,鱼雷的速度.11如图4-31所示的圆柱形闸门,图(a)为关闭状态,图(b)为开启状态,此时上游水位升高0.6m.计算作用在闸门上水平方向的分力,并比较两垂直分力的大小,两种情况下的合力都通过圆心吗第五章思考题1 .速度环量是否一定存在于闭曲线情况下对于非闭曲线的速度环量,能否用斯托克斯定理来计算试归纳一下环量的几种计算法.2 .如何理解流体涡线与流线的差别3 .在涡核区(rR的范围内,求压力分布时用拉格郎日方程,而在的范围内,求压力时要用欧拉方程直接积分呢8.在求解兰金组合涡流场时,为什么须先解r>R的外部流场,再解rr2>球这两直线涡的运动轨迹.4 .已
24、知速度场为vx=-,vy,其中k为大于零的常数.求沿周线x2+y2=32的速度环量.5 .流体在平面环形区域a1<ra)其中a,为常数,k为柱坐标系中z方向的单位矢量,设速度分布是轴对称的,求此速度分布.15 .已知流线为同心圆族,其速度分别为()(r>5)试求:沿圆周x2+y2=R2的速度环流,其中圆的半径分别为R=3,R=5和R=10.16 .给定柱坐标内平面流动vr=(1-)cos0其中,k,a均为常数,求包含r=a圆周在内的任意封闭曲线的速度环量.17 .已知速度场为,求:沿圆x2+y2=1的速度环量.18 .已知速度场为,求:沿椭圆4x2+9y2=36的速度环量.19 .
25、如图5-26所示,初瞬时在(1,0),(-1,0),(0,1)和(0,-1)上分别有环量r等于常数的点涡,求其运动轨迹.第六章思考题1 .举例说明势流理论解决流体力学问题的思路.2 .速度势和流函数同时存在的条件是什么各自具有什么样的性质3 .举例说明用保角变换解决势流问题的思路.4 .举例说明附加质量和附加惯性力的概念.5 .均质不可压缩理想流体绕物体的定常,三维流动,若物体有升力,问物体是否有阻力习题1 ,千试确定下列流函数所描述的流场是否为势流a) "=kxy,c)"=klnxy2b) W=x2/2,d)W=k(/r2)rsin0式中k为常数.2 .已知不可压缩流体平
26、面流动的速度势为小=x2y2+x求其流动的流函数.3 .给定速度场vx=x2y+y2,vy=x2-y2x,vz=0,问:(1)是否同时存在流函数和势函数(2)如存在,求出其具体形式.4 .已知vx=2xy+x,vy=x2-y2-y,vz=0,问:是否存在势函数如存在,试求出其具体形式.5 .已知不可压缩平面流动的势函数小=xy求流函数及速度分布.6 .下列流函数描述的流场是否为有势流,式中C为常数.(1) W=2y2y2+52x2-3x+C(2) W=x+x227 .已知速度势W=Ccos8求对应的流函数.式中C为常数.8 .求流函数W=x+x2y2的速度势,并求点(-2,4)和点(3,5)之
27、间的压力差.9 .一强度为r的平面点涡位于(a,0)点,若y轴为一物体表面,求:(1)流场的流函数;(2)该物体表面上的压力分布.假定无穷远处压力为零.10 .假设在(-a,0)处有一平面点源,在(a,0)处有一平面点汇,它们强度均为Q.若平行直线流和这一对强度相等的源与汇叠加,试问:此流动表示什么样的物体绕流画出绕流示意图,并确定物面方程及驻点所在位置.11流函数W=r冗/asin表示经流a角的流动,如图6-29所示.(1)求流动的速度势;(2)证明a二也表示二平彳f直线流动,并画出流线图;(3)证明a=冗时,表示为一流径a二冗角的流动,并画出流线图.12 .求图6-30所示流动的复势.13
28、 .求图6-31所示流动的复势,m为偶极矩.14 .在静止无界流场中,如图6-32所示分布着四个等强度的平面点源和点汇.求流场的复势.15 .如图6-33所示,在速度为V8的均匀来流中,若在原点处放置一个流量为Q的源,试求沿x轴的压力分布.16杆在速度为vs的平行均匀来流中,在坐标原点放置一个流量为Q的源,从而形成一个半体头部绕流的组合流场,求:(1)驻点位置;(2)过驻点的流线;(3)沿过驻点(零流线上)的速度分布和压力分布.17 .给定复势(1+i)ln(z2-1)+(2-3i)ln(z2+4)+1z,试求通过圆x2+y2=9的体积流量(单位长度)及沿该圆周的速度环量.18 .已知平面流动
29、的势函数或流函数,求相应的复势.(1)小wgyx(2)W=ln(x2+y2)19 .在点(a,0),(-a,0)上放置等强度的点源.证明圆周x2+y2=a2上的任意一点的速度都与y轴平行,且此速度大小与y成反比;(2)求y轴上速度最大的点;证明y轴是一条流线.20 .设复势为:W(z)=mln(z-1/z).(1)流动是由哪些基本流动组成的;(2)求流线方程;(3)求单位时间内通过z=i和z=1/2两点连线的流体体积.21杆已知复势W(z)=2z+8z+3ilnz,试证明x2+y2=4为零流线且为圆柱体表面,并求圆柱体的受力.22一无穷长的平坦河床上有一障碍物,其外形为一圆弧oa如图6-34所
30、示,来流速度为U,求证流动的复势为潼W(z)=U(正a冗aaZ皿刑冗23在宽度为B的无穷长渠道中央放置一强度为2冗10勺点涡,方向如图6-35所示,证明其复势为W(z)=irlne冗-iz/Btz/B+i24圆柱体半径为0.5m,在静水中从速度为零加速至速度为3m/s,求所需推力作功为多25有一半径为r0的无限长圆柱,在距圆柱中心b(b>r0)处放置强度为27tM的偶极子.试求此圆柱体受的力.设流体密度为p.26在水下有一水平的圆柱体,其半径为0.1m,每米长度重力G=196.2N.如果垂直向下对每米长度圆柱体作用以F=392.4N的力,求圆柱体的运动方程.第七章思考题1 .为什么波浪运
31、动是理想流体的无旋运动2 .波浪运动是定常运动吗3 .波形传播速度与流体质点的绝对速度有何不同4 .什么是波的群速度当水深h远大于波长L时,群速度与相速度比例如何当水深h远小于波长L时,群速度与相速度比例如何5 .水波如何按水深进行分类对于不同水深的波浪,其相速度有什么差别其群速度又有什么差别6 .重力和惯性力在液体的波浪运动中各起什么作用7 .二元进行波,由深水进行到浅水后,若波长保持不变,其波能传播速度是否变化习题1在水深h=10m的水域内有一微振幅波,波振幅a=1m,波数k=0.21,试求:波长,波速,周期;(2)波面方程式;(3)x0=0及z0=-5m处水质点的轨迹方程.2 .海洋波以
32、10m/s的速度移动,求这些波的波长和周期.3 .在无限深液体波面上,观察到浮标一分钟内上升下降15次,试求波长和波的传播速度.4如图7-5所示,半径为a的二维圆柱绕流,已知水面为小振幅波,试建立方程及边界条件.5 .已知有限深液体平面进行波的速度势为试给出自由表面的波形表达式6 .已知进行水波的速度势为求:(1)波速C;(2)波峰上流体质点的速度.7 .有一全长为90m的船沿某一方向以等速V航行,今有追随在船后并与船航行方向一致的波浪以传播速度C追赶t船.它赶过一船长所需时间为16.5s,而超过一个波长的距离所需时间为6s,求波长及船速V.8 .波长为3.14m的波,在某一深度处次波面的波高
33、减小一半,试求这一深度.9 .考虑一线性平面重力波,其自由面形状为7=acoskxcos(Tt.若水是无限深的,求:(1)流体质点的速度;(2)流体质点的运动轨迹;(3)流体中的压力分布.10 .已知表面波自由面形状为n=asin(3x(r5口果水深h=2m算,a彻L.求盅波长;(2)频率.11 .考虑线性平面重力波,水深比波长小得多,已知自由面形状为刀=asin(kx-bt咸:速度势,波长,周期和相速度.12 .已知波长入二10碓享,波高为1mf7,求水下1mj?处流体的相对压力.第八章思考题纳维尔一一斯托克斯方程应用时有无什么限制在哪些流动情况下有精确解2 .两平行平板间粘性不可压缩流体作
34、定常层流流动时,其流动是否为有旋运动此时迁移加速度是否为零压力梯度(沿流动方向)是否为常数3 .理想流体压力与粘性流体压力有何差别4 .粘性流体运动的剪切应力与剪切变形角速度成什么关系这一关系是否适用于各种流体的流动5 .试讨论物体在粘性流体中运动和在理想流体中运动其物面边界条件有何差别.习题1 .试验证管内完全发展的层流流动,任意截面上白速度分布u满足下列方程式:式中代为流体的粘性系数.流体为不可压缩流体.2 .如图8-13所示,倾斜平板上流体作层流流动,试证明:(1)速度分布为:(2)单位宽度上的流量为3 .光滑管的湍流运动核心部分的速度分布式中umax,r0为常数,试证管流平均流速为4
35、.如图8-14所示,粘性流体沿垂直圆筒表面以稳定的层流流下,试求出该流动的速度分布.该流体的粘性系数和密度分别为然和P.5 .一皮带输送机装在船上,用来清除浮在海面上的油污,如图8-15所示.假设皮带以一稳定速度v运行,试利用九以及油的粘性系数然确定单位宽度皮带所携带油的流量.6 .然=0.05Ns/m油在环状缝隙中流动.如图8-16所示,已知内径a=0.01m,外径b=0.02m,若外壁的剪应力为40N/m2,求:(1)每米长度上环状缝隙的压力降;(2)流体的体积流量;(3)流体作用在长度为L的内壁上的轴向力.7 .证明相距为h的两无限长不动的平行平板间不可压缩粘性流体定常层流运动时,截面上
36、通过的体积流量与单度长度平板上的压力降成正比.第九章思考题1 .试分别讨论量纲,基本量纲,导出量纲的函义,在一般流体力学中,基本量纲(独立量)有几个2 .试讨论量纲齐次性原理的意义.3 .两个流动现象相似的充分,必要条件是什么4 .出理的基本思想和步骤如何5 .物理相似包括哪几方面的相似6 .分别讨论局部模化和自模化的意义.7 .试分别讨论雷诺数,佛劳德数,斯特洛哈尔数,欧拉数的物理意义.8 .试讨论相似理论在指导模型试验中的意义.9 .相似准则数可由几种方法导出10 .在对船舶进行研究时,总是将总阻力进行分类,这种分类的物理动机是什么习题1 .实船长100米,在海水中的航速为20kn,需要确
37、定它的兴波阻力和粘阻力,试根据相似理论分别讨论如何在风洞中进行船模试验.2 .实船的速度为37km/h,欲在水池中测定它的兴波阻力,问船模在水中的拖曳速度为多少设船模缩尺比为1/30,如测得船模的兴波阻力为1.04N,则实船的兴波阻力应为多少3 .在水池中进行快艇模型实验,模型的大小为实船的1/20,如需测定快艇在航速为50kn时的兴波阻力,问模型的拖曳速度应为多少4 .有一海船长150m,设计航速25kn,船模缩尺比为1:30,若在水池中做实验,试就下列两种情况分别确定模型试验时的船速.(1)仅研究兴波阻力时;(2)仅研究粘T*阻力时.5 .某船的螺旋桨在水池中做模型实验,缩尺比为1:50,
38、若螺旋桨的转速为800转/分,所测的功率为0.002W试换算出原型螺旋桨的转速和功率.6 .已知一元层流流动中的粘性切应力忑与粘性系数然以及角变形速度有关.试通过量纲推理决定牛顿内摩擦定律的形式.7 .水翼艇以等速v0在水面上滑行,已知流场中出现空泡,水的汽化压力为pv,流体的密度p水翼弦长为b,攻角为a,水翼吃水深度为h,求水翼受升力的相似准则数.8.1:40的船模试验,测得速度为0.54m/s波阻力为1.1N,如粘性影响不计,求原型船的波阻为多少9 .温度为20C,水中有一潜体模型长为1.5m,以3m/s的速度拖曳,阻力为14kN,若原型潜体在大气中以18m/s运动,大气温度为15C,要求
39、流动相似,问原型潜体长为多少阻力估计为多少10 .一艘潜水艇下潜0c的海水中以5m/s的速度行驶.(1)求出缩尺比为1:20时,艇模在20c的淡水中的速度.(2)若已测模型推进功率为20kw,求原型艇相应的功率.11 .一船设计为250m长,船身最大宽度为30m,吃水为12m,吃水表面积为8800m2现以1:30的船模进行试验,拖车牵引速度为1.45m/s时,测得总阻力为38N,问:(1)原型船的航速为多少(2)原型船的总阻力为多少12 .已知水上滑艇所受的阻力主要来自波阻,若船模的几何尺寸是实船的1/25,当船模以6m/s速度航行时,其阻力等于1.8N,试求实船所受阻力应为多少13 .某船长
40、132m,浸水面积为2325m2,其船模长2.4m,并以1.5m/s的速度在淡水中试验已知测得的总阻力为17.75N,求原型船的航速.第十章思考题1 .如图1031所示:粘性流体的流动,若流动定常,管长分别为俯2和2l在2,管径分别为D和2D,试比较其体积流量Q容1和Q府2,流速V存1和V有2常2 .试比较圆管内流动的雷诺数的定义和沿平板流动的雷诺数定义,并比较两种情况下的层流流动,湍流流动以及临界雷诺数和自模雷诺数葫3.管径,管长及粗糙度不变,沿程阻力系数是否随流量Q的增大而增加沿程水头损失h籽f是否随流量Q的增大而增加,4 .是否表面上几何光滑的管子一定是"水力光滑”管,而表面上
41、几何粗糙的管子一定是“水力粗糙”管为什么常图10-31图10拟32图10拟335 .管道装置如图10拟32所示,已知水头H,管径d,沿程损失系数入流动在阻力平方区.(1)若在水平方向接一段长为的同管彳水管.(2)在铅垂方向接一段AL长的同管径水管.试讨论两种情况下,流量如何改变为什么慕图10346 .如图10以33所示在同一水平面的分叉管,已知流量分别为Q符1和Q籽2,若在B处接上一段管子长AL管径相同,其它情况不变,问流量Q籽1,Q好2是否变化为什么7 .管路流动装置如图10拟34所示,当阀门开度减小,问阀门前后两测压管的液面高h1,h仔2将如何变化为什么靠8杆湍流流动中是否存在定常流慕9杆
42、湍流中的拟序结构说明了什么蔗;10M湍流流动中,在紧靠壁面处一薄层保持层流状态,湍流附加切应力为零,则壁面切应力是否与管内层流流动时相等为什么其11杆圆管内层流流动时,沿程阻力系数入=SX(64ReSX),雷诺数增加,则入下降,是否沿程阻力也下降12杆对于同一管道,沿程阻力系数入是否随流量的增大而增大甚13杆薄壁小孔口的自由出流与淹没出流的流量公式一样,其差别在哪里晶14杆孔口出流不产生完善收缩对流量系数有无影响甚15杆研究水击现象在工程上有什么意义尊16杆水击有哪些危害尊17杆有什么方法可以减小水击的压力慕18杆在研究水击波的传播速度时,若将水看作不可压缩流体,会导致什么结果葛习题.1 .内
43、径为101.6mmJ9的管道,在433c温度下送水,水的流速为1烈m/s,判断管内流动状态.2 .水平放置的新铸铁管,内径为101.6mm,输送10c的水,当速度为0.4m/s£?时,求90m长度管段上的压力降.3 .20C的原油(其运动粘性系数v=7.2mm2/s流过长900m,内径为304.8mm的新铸铁管(=0.244mm若只计管道摩擦损失,当流量为0222m3/s时,需要多大的压头4 .虹吸管如图10-35所示,已知L1=2m,L2=4m,d=7.5cm,h=1.5m,H=2m,赳口=0.5,鸾头=0.29,叱口=1.若沿程阻力系数入=0.04常管内流量Q和C点处的真空度.5
44、 .倾斜管路如图10-36所示.已知d1=5cm,d2=10cm铝,z1=0.4m,z2=0.7m,只计局部损失,求流量.6 .光滑管中的经验公式入=0.3164Re025,Re<110珈:使用该公式时预期的压力降正比于U7/4.7 .如图1-37所示,两蓄水池由三根铸铁管串联起来,L1=600m,L2=900m,L3=1500m,d1=0.3m,d2=0.4m,d3=0.45m,当水温为15c时,体积流量为0.11m3/s,求两蓄水池液面之高度差.8 .如图10-38所示,给水泵的吸水管长L=15m,直径d=150mm,已知进水阀的损失系数。1=重头损失系数。2=0.流量Q=16l/s
45、,h=4m,若水的运动粘性系数v=0.01cm2廊子的绝对粗糙度A=02mm求水泵吸入处的真空度.9 .通过直径为50mm辞的管道的油,Re=1700,v=0.744X41h02/s?,问距管壁6.25mm处的流速为多少10 .长度为L=20m,直径d=20cm的有压输水管,管道为正常情况下的钢管(=0.19mm),水温为6C,时v=0.0174cm2/若流量为Q=24l/s,求沿程水头损失.11 .截面积为0.093m2的水管,通过的流量为0.283m3/s的水,其截面积突然扩大到0.377m2,若小管中的压力为4.8kN/m2,求:(1)扩大的能头损失;(2)扩大后大管中的压力.12 .输
46、送流量Q=0.236m3/s的水管,直径由d1=450mm突然缩小到d2=300mm,取收缩系数Cc=0.67,计算:(1)水流总能头的变化;(2)压头的变化.13 .如图10-39所示的流动,管子为新铸铁管,=0.013mmjB=0.8,乙C=0.9,工小B点,处的压力.14 .如图10-40所示的船闸闸室,面积A=800m2,泄水孔宽B=4m,高h=2m,形状矩形.上,下游初始水位差H1=5m,孔口流量系数然=0.6玷闸门以速度v=0.05m/s匀速上升开启.设孔口出流时下游水位保持不变.试求:(1)闸门开启到位(达到h=2m的高度)时,闸室中水位下降的深度.(2)当闸室中的水位下降到与下游水位平齐时所需的时间.150混凝土坝身内设一泄水管,如图1041,作用水头H=6m,管长L=4m,希望通过流量Q=10m3/s,试计算所需的管径d,设流量系数=0.82.16.平底空船横断面形状如图1042,船舷高h=0.5m,船底面积Q=8m2,船自重G=9.8KN,现船底有一个直径为10cm的破洞,水自破洞流入船内,试问船沉没所需的时间.17如图10-43圆柱形容器直径D=2.6m,长L=4m,底部有一个出流孔,直径为60mm,空气可以从容器顶部的气孔流入,当容器充水3/4高度时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公益活动形象宣传大使合同
- 保险公司法务专员招聘协议
- 社会组织暂行管理办法
- 拆迁补偿安置
- 培训社区防疫知识与技能
- 博物馆消防工程升级合同
- 在线旅游平台风险管理
- 环卫垃圾处理机械租赁协议
- 玩具公司续租合同样本
- 影楼员工招聘协议
- 2024年消防月主题培训课件:全民消防 生命至上(含11月火灾事故)
- 人教版(2024年新版)七年级数学上册期中模拟测试卷(含答案)
- 中国移动铁通公司招聘笔试题库2024
- 医院培训课件:《静脉中等长度导管临床应用专家共识》
- 榆能集团笔试考什么
- 2024广西公需课高质量共建“一带一路”谱写人类命运共同体新篇章答案
- 2024年连云港专业技术人员继续教育《饮食、运动和健康的关系》92分(试卷)
- 学习总结报告成果展示
- 采煤机(掘进机)操作工实操考核评分表(采煤机)
- 人工破膜评分表
- 五线谱作业本(A4打印
评论
0/150
提交评论