![航天器姿态动力学与运动学课件_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/b444b281-9f9d-4cd5-aeb8-e81a118e6805/b444b281-9f9d-4cd5-aeb8-e81a118e68051.gif)
![航天器姿态动力学与运动学课件_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/b444b281-9f9d-4cd5-aeb8-e81a118e6805/b444b281-9f9d-4cd5-aeb8-e81a118e68052.gif)
![航天器姿态动力学与运动学课件_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/b444b281-9f9d-4cd5-aeb8-e81a118e6805/b444b281-9f9d-4cd5-aeb8-e81a118e68053.gif)
![航天器姿态动力学与运动学课件_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/b444b281-9f9d-4cd5-aeb8-e81a118e6805/b444b281-9f9d-4cd5-aeb8-e81a118e68054.gif)
![航天器姿态动力学与运动学课件_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-1/8/b444b281-9f9d-4cd5-aeb8-e81a118e6805/b444b281-9f9d-4cd5-aeb8-e81a118e68055.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系1 1第第三三讲讲 航天器姿态运动学和动力学航天器姿态运动学和动力学上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系2 2航天器姿态控制系统航天器姿态控制系统上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系3 31、航天器姿态运动学、航天器姿态运动学2、航天器姿态动力学、航天器姿态动力学第第三三讲讲 航天器姿态运动学和动力学航天器姿态运动学和动力学上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系4 4 1、航天器姿态运动学、航天器姿态运动学 航天器的姿态运动学是从几何学的观点研究航天
2、器的姿态运动,不涉及产生运动和改变运动的原因。 若航天器本体坐标系相对于参考坐标系以角速度 转动,则姿态运动学研究的是姿态参数随时间的变化与角速度 之间的关系。 为零,则本体系相对参考系的姿态参数为定值; 不为零,则本体系相对参考系具有相对运动,姿态参数随时间变化。d,dtt ee 航天器姿态运动学:以方向余弦矩阵描述的姿态运动学以欧拉角描述的姿态运动学以四元数描述的姿态运动学 航天器姿态角速度表述如下:上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系5 5 1.1 以方向余弦矩阵描述的姿态运动学以方向余弦矩阵描述的姿态运动学0d()( )limdbbbrrrtttttt RR
3、R 以方向余弦矩阵描述的姿态变化率:()( )( ,)bbrrrbtttReRR3cos(1 cos( ,)sinbrTReeIee 如在t时刻姿态矩阵为 ,在 时刻姿态矩阵计算如下:( )brtRtt000zyzxyxeeeeeeecos100sinttt 方向余弦矩阵简化:333( ,)(1 1)bTrtt R eIeeeIeI()tttt 上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系6 6 1.1 以方向余弦矩阵描述的姿态运动学以方向余弦矩阵描述的姿态运动学0d( )()( )limdbbbrrrttttttt RRR 以方向余弦矩阵描述的姿态变化率: 在 时刻姿态矩
4、阵简化为:3()( ,)( )()( )( )( )bbbbbbrrrrrrttttttttRR eRIRRR0( )( )( )limd( )( )dbbbrrrtbbrrtttttttt R RRRR 航天器姿态运动学方程:30( ,)R eIbrtt tt 优缺点: 优点:姿态运动学方程简单。 缺点:约束条件多、矩阵元素多,计算量较大。 上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系7 7 航天器空间旋转角速度矢量 等于航天器本体坐标系相对轨道坐标系的旋转角速度矢量 与轨道坐标系相对地心惯性坐标系的牵连角速度 之和,即:erer 1.2 以欧拉角描述的姿态运动学以欧拉角
5、描述的姿态运动学 根据动点的合成运动关系,航天器在轨绝对运动由两部分构成: 相对轨道的运动 跟随轨道的牵连运动上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系8 8 航天器空间旋转角速度矢量er 根据角速度叠加原理,角速度矢量可由三次坐标轴转动对应的角速度矢量叠加而成。考虑3-1-2转序情况,有:000000( )( )( )( )( )( )0010 = =eYXzYXYCS CSSC C RRRRRR 将 投影到航天器本体坐标系,可得:o( , , )( )( )( )RRRRbrooYXoz o000 o 1.2 以欧拉角描述的姿态运动学以欧拉角描述的姿态运动学上海交通上
6、海交通大学航空宇航信息与控制系大学航空宇航信息与控制系9 9000001( , , )00 0010=RxbyozCS CSSC CC SS S CC CS SCS CSSC CS C C 进一步,可得: 航天器姿态运动学方程:0010 xyzC CC SC SS S CS SCS CC CSCS SS CCC 滚动角 ,姿态运动学方程出现奇异问题。090 1.2 以欧拉角描述的姿态运动学以欧拉角描述的姿态运动学求逆求逆 考虑小姿态角度工况下,忽略二阶小量,简化姿态运动学方程如下:01xyz 简化姿态运动学方程仅适用于航天器小姿态角度工况,航天器大角度姿态工况不再适用。上海交通上海交通大学航空
7、宇航信息与控制系大学航空宇航信息与控制系101000001( , , )00RxbyozCS CSSC C = 1.2 以欧拉角描述的姿态运动学以欧拉角描述的姿态运动学100000SCS CSSS SS S ,;-;01xyz 1( , , )11Rbo 上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系11 11 以方向余弦矩阵描述的姿态运动学方程: 1.3 以四元数描述的姿态运动学以四元数描述的姿态运动学d( )( )dbbrrttt R R 推导过程: 把方向余弦矩阵以四元素描述; 代入以方向余弦矩阵描述的运动学方程; 总结四元素与角速度之间的关系。 基于四元数描述的方向余
8、弦矩阵:2030222201231230132022221230021323102222132023100312( )()222()2()2()2()2()2()bTTrvvvvvqqqqqqq qq qq qq qq qq qqqqqq qq qq qq qq qq qqqqqR qq q Iq qq 上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系121211220333000101022vvTTvqqqqqqqqqq Iqqq 姿态运动学方程不含三角函数从而避开了系统奇异问题,适用于航天器大角度姿态机动工况。0301()212vvvqq qqIq 1.3 以四元数描述的姿
9、态运动学以四元数描述的姿态运动学 以四元数描述的航天器姿态运动学方程:()12qq 上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系13131、航天器姿态运动学、航天器姿态运动学2、航天器姿态动力学、航天器姿态动力学第第三三讲讲 航天器姿态运动学和动力学航天器姿态运动学和动力学上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系1414 2、航天器姿态动力学、航天器姿态动力学动量矩定理动量矩定理 刚体航天器姿态动力学是以刚体的动量矩定理为基础的。了解刚体的动量矩定理成为研究航天器姿态动力学的一个重要条件。 质点的力F和动量mv对点O的矩分别如下:0() mFrF0(
10、)mmmvrvO00d()()dmtmvmF 质点的质点的动量矩定理:动量矩定理: 质点动量矩守恒条件:质点动量矩守恒条件:0()0mF0()mmvconstant上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系1515 2、航天器姿态动力学、航天器姿态动力学姿态动力学姿态动力学 本体坐标系中,航天器参数定义如下:ijkHijkrijkMijkxyzxyzxyzhhhxyzMMM -航天器姿态角速度H -航天器角动量(动量矩)r -航天器内相对于质心O的矢径M -作用在航天器相对于质心O的合外力矩ddddddddddddddrijkijkxyzxyzttttttt 对矢径求导,
11、得:各质点相对于质点相对于质心的位置不变质心的位置不变ddddddddttttxyzkrij上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系1616 2、航天器姿态动力学、航天器姿态动力学姿态动力学姿态动力学i iOaatddd dddtttijkijk00d()( )limlimdtttttaattt iii 00dlimlimdttaatttt iii 0sinsintaaaatt i i i i 坐标基导数公式:( )i t()i tt OO上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系1717 2、航天器姿态动力学、航天器姿态动力学姿态动力学姿态动力学
12、ddd dddtttijkijkdddd()ddddxyzxyzttttrijkijkr 航天器动量矩如下:dddmmtrHr()drrHmm 对矢径求导,得:222222()()()() +()()() +()()()xyzxyzxyzyzxyxzxyxzyzxzyzxyrrijk222222()xyzyzxyxzxyxzyzxzyzxyrr上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系1818 2、航天器姿态动力学、航天器姿态动力学姿态动力学姿态动力学222222()xyzyzxyxzxyxzyzxzyzxyrr222222()ddxymmzyzxyxzmxyxzyzmx
13、zyzxyHrr222222d d d d d dxyzmmmxyyzxymmmIyzmIxzmIxymIxy mIyz mIxy m主转动惯量 惯量积 航天器动量矩:xxxyxzxyxyyyzyzxzyzzzhIIIhIIIhIIIHI转动惯量矩阵上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系1919 2、航天器姿态动力学、航天器姿态动力学姿态动力学姿态动力学 对动量矩求导,可得:ddddddddxyxyzzhhhttthhhtiHijkjkddtHH HMddI IMt000zyzxyx 航天器姿态动力学方程:ddddddxyxyzzhhhttthhhiijkkjHHI上
14、海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系2020 2、航天器姿态动力学、航天器姿态动力学姿态动力学姿态动力学 选取航天器本体坐标系为主轴坐标系,得:000000 xxxyyyzzzhIhIhI 姿态动力学方程:000 xyxzyzIII0d, 0d0zyzxyxtI IM d()dd()dd()dxxyzzyxyyxzxzyzzxyyxzIIIMtIIIMtIIIMt 上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系2121 2、航天器姿态动力学、航天器姿态动力学线性化姿态动力学方程线性化姿态动力学方程01xyz 考虑小姿态角度工况下,滚动轴姿态动力学方程
15、简化如下:d()dd()d()ddyyxzxzyzzxxxyzzyxyyxzIIIMtIItMIIIIMt 000()+()()()xzyxIIIM 20000+()()()()xxzyzyzyzyxIIIIIIIIIIM200()()xyzxyzxIIIIIIM 0,02222 2、航天器姿态动力学、航天器姿态动力学线性化姿态动力学方程线性化姿态动力学方程 线性化航天器姿态动力学方程:T xxAx BM200200()()()()xyzxyzxyyzyzxyxzIIIIIIMIMIIIIIIM xxyyzzIMIMIM忽略轨道角速度耦合作用以及考虑航天器高轨道情况20020000000010
16、0000000010000000001100()()0000,100000000()()1000000 zyzxyxxxyxyyzxzzzIIIIIIIIIIIIIIIIIAB上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系2323 2、航天器姿态动力学、航天器姿态动力学 航天器所受合外力矩: 控制力矩控制力矩:姿态稳定和姿态机动 空间扰动力矩空间扰动力矩:航天器姿态受摄发生变化空间扰动力矩空间扰动力矩 空间扰动力矩主要包括: 气动力矩 重力梯度力矩 磁干扰力矩 辐射力矩 扰动力矩是相对的,有些情况下也可作为姿态稳定力矩重力梯度力矩、磁力矩等。上海交通上海交通大学航空宇航信息与
17、控制系大学航空宇航信息与控制系2424气动力矩气动力矩 1000km以下的轨道,气动力矩必须予以考虑; 500km以下的低轨道,气动力矩是主要的空间环境干扰力矩。 2、航天器姿态动力学、航天器姿态动力学 气动力矩公式dMD L D气动力矢量L压心相对于航天器质心的矢径上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系2525重力梯度力矩重力梯度力矩 重力梯度力矩是因航天器各部分质量具有不同重力而产生的。其大小与地球重力场和航天器质量分布特性有关。圆轨道下重力梯度力矩矢量表达式:203()gcscMiIi -地心至航天器质心方向的单位矢量; -航天器转动惯量矩阵sIci 2、航天器
18、姿态动力学、航天器姿态动力学Orsted (1999, Denmark)上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系2626磁干扰力矩磁干扰力矩 磁干扰力矩是由航天器的磁特性和环境磁场相互作用而产生的。确定这个力矩需要知道环境磁场(如地磁场)的强度和方向、航天器的磁矩,以及这个磁矩相对于当地磁场向量的方向。 磁干扰力矩可以粗略地表示如下:mMP BP航天器剩余磁矩B航天器所在高度的环境磁场强度 2、航天器姿态动力学、航天器姿态动力学上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系2727辐射力矩辐射力矩 辐射力矩来源: 主要是太阳直接照射以及航天器质心和压心不重合所引起的; 地球反射的太阳光和地球及其大气层的红外辐射; 航天器上的电磁能(有红外线或无线电讯号)的不对称辐射。资源资源一号一号卫星卫星( (中国、巴西中国、巴西) ) 2、航天器姿态动力学、航天器姿态动力学f辐射压力矢量L辐射压心相对于航天器质心的矢径 辐射力矩表达式:s MfL 轨道高度1000km以上且表面积大的航天器,辐射力矩是主要环境力矩,特别是针对具有单翼太阳帆板的航天器。上海交通上海交通大学航空宇航信息与控制系大学航空宇航信息与控制系2828空间扰动力矩空间扰动力矩轨道类型及轨道轨道类型及轨道高度高度主要环境力矩主要环境力矩高轨道高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年结构化布线系统的检测设备合作协议书
- 冀教版数学九年级下册《30.3 由不共线三点的坐标确定二次函数》听评课记录1
- 生产技术合同范本(2篇)
- 甘肃省就业协议书(2篇)
- 北师大版历史七年级下册第19课《明清经济繁盛与清前期盛世辉煌》听课评课记录
- 人教版数学八年级下册听评课记录:第16章 二次根式的乘除法(二)
- 新北师大版小学数学一年级上册《分类》听评课记录
- 中图版历史七年级下册第14课《明朝的对外交往与抗倭斗争》听课评课记录
- 苏科版数学九年级上册《切线》听评课记录
- 统编版初中语文九年级下册第十六课《驱遣我们的想象》听评课记录
- 2025年春季学期学校德育工作计划安排表(完整版)
- 2025年有机肥行业发展趋势分析报告
- 中央2025年中国文联所属单位招聘14人笔试历年参考题库附带答案详解
- 学生作文稿纸(A4打印)
- 2024美团共享出行加盟合同
- 2023-2024年员工三级安全培训考试题及参考答案(综合题)
- 2024年人教版初中英语九年级全册单元测评与答案
- 永州市2025届高三高考第二次模拟考试(二模)语文试卷(含答案)
- 国学智慧与健康幸福人生(课件)
- 【渞法】学会自我保护教学设计 七年级道德与法治下册(统编版2024)
- 2025-2030年中国融雪剂行业运行动态及发展前景预测报告
评论
0/150
提交评论