版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 第十五章第十五章 整式的乘除与整式的乘除与因式分解复习)因式分解复习) 本章知识结构:本章知识结构:一、整式的有关概念一、整式的有关概念 1、代数式、代数式 2、单项式、单项式 3、单项式的系数及次数、单项式的系数及次数 4、多项式、多项式 5、多项式的项、次数、多项式的项、次数 6、整式、整式 二、整式的运算二、整式的运算 (一)整式的加减法(一)整式的加减法去括号,合并同类项去括号,合并同类项 1、单项式除以单项式、单项式除以单项式 2、多项式除以单项式、多项式除以单项式(三)整式的除法(三)整式的除法你回忆起了吗?就这些你回忆起了吗?就这些知识知识 1、同底数幂的乘法、同底数幂的乘法
2、2、幂的乘方、幂的乘方 3、积的乘方、积的乘方 4、同底数的幂相除、同底数的幂相除 5、单项式乘以单项式、单项式乘以单项式 6、单项式乘以多项式、单项式乘以多项式 7、多项式乘以多项式、多项式乘以多项式 8、平方差公式、平方差公式 9、完全平方公式、完全平方公式(二)整式的乘法(二)整式的乘法一、整式的有关概念一、整式的有关概念1、单项式:单项式:数与字母乘积,这样的代数式叫单项式。数与字母乘积,这样的代数式叫单项式。单独的一个数或字母也是单项式。单独的一个数或字母也是单项式。2、单项式的系数:单项式的系数:单项式中的数字因数。单项式中的数字因数。3、单项式的次数:单项式的次数: 单项式中所有
3、的字母的指数和。单项式中所有的字母的指数和。4、多项式:多项式:几个单项式的和叫多项式。几个单项式的和叫多项式。5、多项式的项及次数:多项式的项及次数:组成多项式中的单项式叫组成多项式中的单项式叫多项式的项,多项式中次数最高的项的次数叫做多项式的项,多项式中次数最高的项的次数叫做这个多项式的次数。这个多项式的次数。特别注意,多项式的次数不特别注意,多项式的次数不是组成多项式的所有字母指数和!是组成多项式的所有字母指数和!6、整式:单项式与多项式统称整式。(分母含、整式:单项式与多项式统称整式。(分母含有字母的代数式不是整式)有字母的代数式不是整式)二、整式的运算二、整式的运算(一)整式的加减法
4、(一)整式的加减法基本步骤:去括号,合并同类项。基本步骤:去括号,合并同类项。1、同底数幂的乘法、同底数幂的乘法法则:法则:同底数幂相乘,底数不变,指数相加。同底数幂相乘,底数不变,指数相加。数学符号表示:数学符号表示:(其中(其中m、n为正整数)为正整数)nmnmaaa(二)整式的乘法(二)整式的乘法练习:判断下列各式是否正确。练习:判断下列各式是否正确。6623222844333)()()()(2,2xxxxxmmmbbbaaa2、幂的乘方、幂的乘方法则:法则:幂的乘方,底数不变,指数相乘。幂的乘方,底数不变,指数相乘。数学符号表示:数学符号表示:mnnmaa)((其中(其中m、n为正整数
5、)为正整数)练习:判断下列各式是否正确。练习:判断下列各式是否正确。2244241222443243284444)()()( ,)()(,)(mmmnnaaaxxbbbaaamnppnmaa)((其中(其中m、n、P为正整数)为正整数)3、积的乘方、积的乘方法则:法则:积的乘方,等于把积的每一个因式分别乘方,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。再把所得的幂相乘。符号表示:符号表示:)()(),( ,)(为正整数其中为正整数其中ncbaabcnbaabnnnnnnn练习:计算下列各式。练习:计算下列各式。32332324)( ,)2( ,)21( ,)2(baxybaxyz
6、4.单项式与单项式相乘的法则:单项式与单项式相乘的法则: 单项式与单项式相乘,把它们单项式与单项式相乘,把它们的的系数、相同字母系数、相同字母分别相乘,对分别相乘,对于只在一个单项式里含有的字母,于只在一个单项式里含有的字母,则连同它的指数作为积的一个因则连同它的指数作为积的一个因式。式。 法则:法则: 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(a+b)( m+n)=am+an+bm+bn5 .多项式与多项式相乘:多项式与多项式相乘:=am+an+bm+bn(1)、平方差公式)、平方差公式即两个数的和与这两个数的差的积,等于这两个即两个数的和与这两个
7、数的差的积,等于这两个数的平方差。这个公式叫(乘法的)平方差公式数的平方差。这个公式叫(乘法的)平方差公式.,)(22也可以是代数式既可以是数其中babababa说明说明:平方差公式是根据多项式乘以多平方差公式是根据多项式乘以多项式得到的,它是项式得到的,它是两个数的和两个数的和与与同样的同样的两个数两个数的差的差的积的形式。的积的形式。6.乘法公式:乘法公式:一般的,我们有:一般的,我们有:(2)、完全平方公式)、完全平方公式法则法则:两数和(或差)的平方,等于它们的:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的平方和,加上(或减去)它们的积的2倍倍。.,2)(;2)(2
8、22222也可以是代数式既可以是数其中 bababababababa2222)( :bababa即一般的,我们有:一般的,我们有:注意:注意: (1)(a-b)=-(b-a) (2 )(a-b)2=(b-a)2 (3) (-a-b)2=(a+b)2 (4) (a-b)3=-(b-a)37.添括号的法则:添括号的法则: 添括号时,如果括号前面是正号,添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的果括号前面是负号,括到括号里的各项都要改变符号。各项都要改变符号。(1)、同底数幂的除法)、同底数幂的除法即:同底数幂相除,底数不
9、变,指数相减。即:同底数幂相除,底数不变,指数相减。一般地,我们有一般地,我们有nmnmaaa(其中(其中a0,m、n为为正整数正整数,并且并且mn ))0(10aa8.整式的除法:整式的除法:即任何不等于即任何不等于0的数的的数的0次幂都等于次幂都等于1(2)、单项式除以单项式)、单项式除以单项式 法则:法则:单项式除以单项式,把它们的系数、同单项式除以单项式,把它们的系数、同底数幂分别相除作为商的一个因式,对于只在被底数幂分别相除作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一除式里含有的字母,则连同它的指数作为商的一个因式。个因式。(3)、多项式除以单项式)、多项式
10、除以单项式 法则:法则:多项式除以单项式,先把这个多项多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商式的每一项除以这个单项式,再把所得的商相加。相加。22219992001)6( ,1999)5()23)(23)(4(zyxzyx?,2)()3(., 1, 2)2(.)1(, 51) 1 (222222222应为多少则如果的值求若的值求已知znmnmznmxyyxyxaaaa练习:计算下列各题。练习:计算下列各题。)5 . 0()4331) 4 ()6 ()645)(3 ()(31)( 6 ) 2 ()2()41)(1 (21231221223233225346yxyxy
11、xyxxxyxyxbabacacbammmnm分解因式分解因式定义定义把一个多项式化成几个整式的积的形式,象把一个多项式化成几个整式的积的形式,象这样的式子变形叫做把这个多项式这样的式子变形叫做把这个多项式因式分解因式分解或或分解因式分解因式。与整式乘法的关系:与整式乘法的关系:互为逆过程,互逆关系互为逆过程,互逆关系方法方法提公因式法提公因式法公式法公式法步骤一提:一提:提公因式提公因式二用:二用:运用公式运用公式三查:三查:检查因式分解的结果是否正确检查因式分解的结果是否正确 (彻底性)(彻底性)平方差公式平方差公式 a2-b2=(a+b)(a-b)完全平方公式完全平方公式a22ab+b2
12、=(ab)2九九.(1).公因式:公因式:一个多项式的各项都含有的一个多项式的各项都含有的公共公共的因式,的因式,叫做这个多项式各项的叫做这个多项式各项的公因式公因式(2)找公因式:找公因式:找各项找各项系数的最大公约系数的最大公约数数与各项都含有的字母的与各项都含有的字母的最低次幂的积最低次幂的积。(3).提公因式法:提公因式法:一般地,如果多项式的各一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,项有公因式,可以把这个公因式提到括号外面,作为多项式的一个因式,然后用原多项式的每作为多项式的一个因式,然后用原多项式的每一项除以这个公因式,所得的商作为另一个因一项除以这个公因式,所得的商作为另一个因式,将多项式写成因式乘积的形式,这种因式式,将多项式写成因式乘积的形式,这种因式分解分解 的方法的方法提公因式法。提公因式法。1、利用因式分解计算:(1) (2)(1 )(1 )(1 )(1 )(3)20042-40082005+20052 (4)9.929.90.20.012220012003100122123124121
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沪科版九年级下册数学全册公开课教案
- 河南科技大学《日语入门》2021-2022学年第一学期期末试卷
- 白血病饮食健康
- 清廉金融文化宣传
- 如何讲礼仪培训课件
- 六年级下册草原课件
- 世界艾滋病日2024年
- 《寒假读书心得报告》课件
- 《中医骨科护理常规》课件
- 《国外汽车品牌赏析》课件
- 求平面直角坐标系中三角形的面积市公开课一等奖省名师优质课赛课一等奖课件
- 幼儿卫生学皮肤课件
- 维吾尔族服饰课件
- 高考作文指导系列:核心概念的界定课件23张
- 浙江省杭州市各县区乡镇行政村村庄村名居民村民委员会明细
- 北京科技大学第二批非教学科研岗位招考聘用(必考题)模拟卷和答案
- 2022年医院财务科长年终工作总结
- 《小学六年级英语复习教学建议》讲座课件
- 学校刷牙评分表
- 社团面试评分表
- DB37T 4243-2020 单井地热资源储量评价技术规程
评论
0/150
提交评论