版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、7.已知一组数据:3, 4, 6, 7, 8, 8,下列说法正确的是()2016年辽宁省沈阳市中考数学试卷、选择题(下列各题的备选答案中,只有一个答案是正确的。每小题1 下列各数是无理数的是()A 0B -1C遐D寻2 如图是由 4 个大小相同的小立方块搭成的几何体,这个几何体的俯视图是(3 .在我市 2016 年春季房地产展示交易会上, 全市房地产开发企业提供房源的参展面积达到 方米,将数据 5400000 用科学记数法表示为(A . 0.54X107B. 54 XI05C. 5.4X106D . 5.4 XI07轴于点 A , PB 丄 y 轴于点 B .若四边形 OAPB 的面积为 3,
2、则 k的值为()5.射击运动员射击一次,命中靶心”这个事件是(A .确定事件 B .必然事件 C.不可能事件 D .不确定事件6.下列计算正确的是()A . x4+x4=2x8B.x3?x2=x6C.(x2y)3=x6y3D.( x-y)( y-x)=x2-y21/V0AD.A . 3B . - 3C.2 分,共 20 分)5400000 平4.如图,在平面直角坐标系中,点P 是反比例函数y= . (x 0)图象上的一点,分别过点P 作 PA 丄 xA 众数是 2B.众数是 8C 中位数是 6D 中位数是 78.一元二次方程 x2-4x=12的根是()A . x 仁 2 , x2= - 6B
3、. x 仁2, x2=6C. xi= 2, x2= - 6D. xi=2, x2=6二次函数图象上的两点,其中- 3xi/1A . yiy2C. y 的最小值是-3D . y 的最小值是-4二、填空题(每小题 3 分,共 i8 分)2ii .分解因式:2x - 4x+2=_.12.若一个多边形的内角和是_ 540则这个多边形是边形.r 113. 化简:(i-? ( m+i) =_.i4 .三个连续整数中,n 是最大的一个,这三个数的和为 _ .i5.在一条笔直的公路上有 A , B, C 三地,C 地位于 A , B 两地之间,甲,乙两车分别从 A , B 两地出发,沿这条公路匀速 行驶至 C
4、 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离 y ( km)与甲车行驶时间 t (h)之间的函数关系如图表示,当甲车出发 _ h 时,两车相距 350km .10.在平面直角坐标系中,二次函数y=x2+2x - 3 的图象如图所示,点A (xi, yi) , B (X2, y2)是该A .B. 4C. 8 D. 4:/ B=30 AB=8,贝 U BC 的长是(16.如图,在 Rt ABC 中,/ A=90 AB=AC , BC=20 , DE 是厶 ABC 的中位线,点 M 是边 BC 上一点,BM=3,点 N 是线段 MC 上的一个动点,连接 DN , ME ,
5、 DN 与 ME 相交于点 0若OMN 是直 角三角形,贝UDO 的长是_.A三、解答题17计算:(n-4)+|3 - tan60(日)2+18为了传承优秀传统文化,某校开展经典诵读”比赛活动,诵读材料有论语,三字经,弟子规(分别用字母 A , B, C 依次表示这三个诵读材料),将 A , B, C 这三个字母分别写在 3 张完全 相同的不透明卡片的正面上,把这3 张卡片背面朝上洗匀后放在桌面上小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡 片,选手按各自抽取的卡片上的内容进行诵读比赛.(1 )小明诵读论语的概率是 _;(
6、2 )请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.19如图,ABCABD,点 E 在边 AB 上,CE/ BD,连接 DE 求证:(1)/ CEB= / CBE ;20.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况, 随机调查了该校 m 名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比丢沙包2010%打篮球60p%跳大绳n40%踢毽球4020%根据图表中提供的信息,解答下列问题:(1)m=_,n=_
7、,p=_(2)请根据以上信 息直接补全条形统计图;22.倡导健康生活,推进全民健身,某社区要购进A , B 两种型号的健身器材若干套,健身器材的购买单价分别为每套310 元,460 元,且每种型号健身器材必须整套购买.,过点 D 作OOA , B 两种型号的切线交边 AC 于点 F.BC,AC 相交于点 D,E,BD=CD(3)根据抽样调查结果,请你估计该校2000 名学生中有多少名学生最喜欢跳大绳.学生堰喜戏的;舌动项目的人题形疑计囹(1) 若购买 A , B 两种型号的健身器材共 50 套,且恰好支出 20000 元,求 A , B 两种型号健身器材各 购买多少套?(2) 若购买 A,B
8、两种型号的健身器材共 50 套,且支出不超过 18000 元,求 A 种型号健身器材至少要 购买多少套?23.如图,在平面直角坐标系中, AOB 的顶点 O 为坐标原点,点 A 的坐标为(4, 0),点 B 的坐标为(0, 1),点 C 为边 AB 的中点,正方形 OBDE 的顶点 E 在 x 轴的正半轴上,连接 CO , CD , CE.(1) 线段 OC 的长为_ ;(2) 求证:CBDCOE ;(3) 将正方形 OBDE 沿 x 轴正方向平移得到正方形 O1B1D1E1,其中点 O, B , D, E 的对应点分别为点 O1, B1, D1, E1,连接 CD, CE,设点 E 的坐标为
9、(a, 0),其中 a 老, CD1E1的面积为 S.1当 1vav2 时,请直接写出 S 与 a 之间的函数表达式;2在平移过程中,当 S=+时,请直接写出 a 的值.0 24.在ABC中, AB=6 , AC=BC=5, 将 ABC绕点A按顺时针方向旋转, 得到ADE, 旋转角为a(0av180 ,点 B 的对应点为点 D,点 C 的对应点为点 E,连接 BD , BE .(1) 如图,当a=60时,延长 BE 交 AD 于点 F.1求证:ABD 是等边三角形;2求证:BF 丄 AD , AF=DF ;3请直接写出 BE 的长;(2) 在旋转过程中,过点 D 作 DG 垂直于直线 AB,垂
10、足为点 G,连接 CE,当/ DAG= / ACB,且线 段 DG 与线段 AE 无公共点时,请直接写出 BE+CE 的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.cc25.如图,在平面直角坐标系中,矩形OCDE 的顶点 C 和 E 分别在 y 轴的正半轴和 x 轴的正半轴上,交于点 K.(1)将矩形 OCDE 沿 AB 折叠,点 0 恰好落在边 CD 上的点 F 处.1点 B 的坐标为(_ 、_) , BK 的长是_, CK 的长是_ ;2求点 F 的坐标;3请直接写出抛物线的函数表达式;(2)将矩形 OCDE 沿着经过点 E 的直线折叠,点 0 恰好落在边 CD 上的点
11、G 处,连接 0G ,折痕与0G 相交于点 H,点 M 是线段 EH 上的一个动点(不与点 H 重合),连接 MG , M0 ,过点 G 作 GP 丄 0M 于点 P,交EH 于点 N,连接 ON,点 M 从点 E 开始沿线段 EH 向点 H 运动,至与点 N 重合时停止, MOG 和厶 NOG 的面积分别表示为 Si和 S2,在点 M 的运动过程中,Si?S2(即 Si与 S2的积)的值是否发生 变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.0C=8,OE=17,抛物线3 2y=X-3x+m 与 y 轴相交于点A ,抛物线的对称轴与x 轴相交于点2016年辽宁省沈阳市中考数学试
12、卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的。每小题2 分,共 20 分)1 下列各数是无理数的是()oA 0B - 1C V2 D 27【考点】无理数【分析】根据无理数是无限不循环小数,可得答案【解答】解:0,- 1,是有理数, 匚是无理数,If I故选:C 【点评】 此题主要考查了无理数的定义, 注意带根号的要开不尽方才是无理数, 无限不循环小数为无理 数女口n仏,0.8080080008(每两个 8 之间依次多 1 个 0)等形式.2 如图是由 4 个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()温馨提示:考生可以根据题意,在备用图中补充图形,以便
13、作答.斑弘I备.甲图【点评】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象, 再画它的三视图3 在我市 2016 年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000 平方米,将数据 5400000 用科学记数法表示为()A 0.54X107B. 54 XI05C. 5.4X106D 5.4 XI07【考点】科学记数法 一表示较大的数.【分析】科学记数法的表示形式为aX0n的形式,其中 1 弓 a|v 10, n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于
14、10 时,n是正数;当原数的绝对值小于1 时,n 是负数.【解答】解:5400000 用科学记数法表示为 5.4X06,故选:C.【点评】此题考查了科学记数法的表示方法科学记数法的表示形式为aX0n的形式,其中 1 珥 a|v 10,n 为整数, 表示时关键要正确确定a 的值以及 n 的值.轴于点 A , PB 丄 y 轴于点 B 若四边形 OAPB 的面积为 3,则 k 的值为()【考点】反比例函数系数 k 的几何意义.【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积 S 是个定值,即 S=|k|.再由函数图象所在的象限确定 k 的值即可.【解答】解:T点 P 是反比例函数
15、y= (x 0)图象上的一点,分别过点P 作 PA 丄 x 轴于点 A , PB 丄 y轴于点 B.若四边形 OAPB 的面积为 3,S%0A 3B - 3C.4.如图,在平面直角坐标系中,点P 作 PA 丄 xP 是反比例函数(x 0)图象上的一点,分别过点矩形 OAPB 的面积 S=|k|=3,解得 k= 又/反比例函数的图象在第一象限,【点评】本题主要考查了反比例函数y 二上中 k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.5.射击运动员射击一次,命中靶心 ”这个事件
16、是()A .确定事件 B .必然事件 C.不可能事件 D .不确定事件【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解: 射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生 的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.下列计算正确的是()A .X4+X4=2X7 8B. x3?x2=x6C. ( x2y)3=x6y3D. ( x- y)( y - x) =x2- y
17、2【考点】整式的混合运算.【专题】存在型.【分析】先计算出各个选项中式子的正确结果,即可得到哪个选项是正确的,本题得以解决.【解答】解:TX4+X4=2X4,故选项 A 错误;/X3?X2=X5,故选项 B 错误;/ (x2y)3=x6y3,故选项 C 正确;7 已知一组数据:3, 4, 6, 7, 8, 8,下列说法正确的是()A .众数是 2B .众数是 8C .中位数是 6D .中位数是 7T(x- y)( y -X) = - x2+2xy - y2,故选项 D 错误;故选 C.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.【考点】众数;中位数.【分析】根据众
18、数和中位数的定义求解.【解答】解:数据:3, 4, 6, 7, 8, 8 的众数为 8,中为数为 65故选 B.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数也考查了中位数定义.8.一元二次方程 x2-4x=12 的根是( )A . xi=2 , x2= - 6B . xi= 2, x2=6C. xi= - 2, x2= 6D. xi=2, x2=6【考点】解一元二次方程 -因式分解法.【专题】计算题;一次方程(组)及应用.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得: x2- 4x - 12=0,分解因式得:(x+2)( x - 6) =0,解得:xi=
19、 - 2, X2=6,故选 B【点评】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键./ B=30 AB=8,贝 U BC 的长是(B.4C.8 .D .4. I【考点】解直角三角形.gol【分析】根据 cosB=及特殊角的三角函数值解题即可.【解答】解:在 Rt ABC 中,/ C=90 / B=30 AB=8 ,【点评】本题考查了三角函数的定义及特殊角的三角函数值,是基础知识,需要熟练掌握.10.在平面直角坐标系中,二次函数y=x2+2x - 3 的图象如图所示,点 A (xi, yi) , B (x2, y2)是该二次函数图象上的两点,其中-3xi X2切,则
20、下列结论正确的是()A . yiy2C. y 的最小值是-3D. y 的最小值是-4【考点】二次函数图象上点的坐标特征;二次函数的最值.【分析】根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.【解答】解:y=x2+2x - 3= (x+3)( x- i),则该抛物线与 x 轴的两交点横坐标分别是-3、i.22又 y=x +2x - 3= (x+i)- 4,该抛物线的顶点坐标是(- i,- 4),对称轴为 x= - i .A、 无法确定点 A、B 离对称轴 x= - i 的远近,故无法判断 yi与 y2的大小,故本选项错误;B、 无法确定点 A、B 离对称轴 x= - i 的
21、远近,故无法判断 yi与 y2的大小,故本选项错误;C、y 的最小值是-4,故本选项错误;D、y 的最小值是-4,故本选项正确.故选:D.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的最值,解题时,利用了数形结合”的数学思想.二、填空题(每小题 3 分,共 i8 分)ii .分解因式:2x2- 4x+2= 2(x - i) 2 .【考点】提公因式法与公式法的综合运用. BC=8 :=4【分析】先提取公因数 2,再利用完全平方公式进行二次分解完全平方公式:(a)2=a22ab+b2.【解答】解:2x2-4x+2 ,=2 (x2- 2x+1),2=2 (x - 1)2【点评】本题主要考查
22、提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.12若一个多边形的内角和是 540。,则这个多边形是五 边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式求出边数即可.【解答】解:设多边形的边数是n,则(n - 2) ?180 540 解得 n=5,故答案为:五.【点评】本题考查了多边形的内角和定理,熟记公式是解题的关键.【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.故答案为:m【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.14 三个连续整数中,n 是最大的一
23、个,这三个数的和为3n- 3 .【考点】列代数式.【专题】应用题.【解答】解:原式ITI *1in+1? (m+1) =m ,13.化简:(1 -? (m+1) =_m【分析】先利用连续整数的关系用n 表示出最小的数和中间的整数,然后把三个数相加即可.【解答】解:这三个数的和为n- 2+n - 1+ n=3n - 3.故答案为 3n- 3.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式本题的关键是表示出最小整数.15.在一条笔直的公路上有 A , B, C 三地,C 地位于 A , B 两地之间,甲,乙两车分别从 A , B 两地出
24、 发,沿这条公路匀速行驶至 C 地停止从甲车出发至甲车到达 C 地的过程,甲、乙两车各自与 C 地的 距离 y (km)与甲车行驶时间 t (h)之间的函数关系如图表示,当甲车出发frac32 h 时,两车【分析】根据图象,可得 A 与 C 的距离等于 B 与 C 的距离,根据行驶路程与时间的关系,可得相应的 速度,根据甲、乙的路程,可得方程,根据解方程,可得答案.【解答】解:由题意,得AC=BC=240km ,甲的速度 240 詔=60km/h,乙的速度 2400=80km/h .设甲出发 x 小时甲乙相距 350km,由题意,得60 x+80 (x - 1) +350=240 2,解得 x
25、=|,3答:甲车出发 h 时,两车相距 350km ,故答案为:.【点评】本题考查了一次函数的应用,利用题意找出等量关系是解题关键.16.如图,在 Rt ABC 中,/ A=90 AB=AC , BC=20 , DE 是厶 ABC 的中位线,点 M 是边 BC 上一 点,BM=3,点 N 是线段 MC 上的一个动点,连接 DN , ME , DN 与 ME 相交于点 0若 OMN 是直 角三角形,贝 H DO 的长是 frac256或frac5013.I 分析】分两种情形讨论即可/MN O=90根据誥耗【解答】解:如图作 EF 丄 BC 于 F, DN 丄 BC 于 N 交 EM 于点 0,
26、DE 是厶 ABC 中位线, DE / BC , DE=BC=10,/ DN / EF,四边形 DEFN 是平行四边形,四边形 DEFN 是矩形, EF=DN,, DE=FN =10 ,/ AB=AC , / A=90 当 / MON=90。时,/ DOEEFM ,/ EM= L十 T. 一 =13 ,5QDO=-J【考点】 三角形中位线定理.故答案为计算即可 / MON=90 利用 DOE EFM,得匹型EF=EM计算即可.此时 / MN O =90 / / EFN =90 DO =【点评】本题考查三角形中位线定理、矩形的判定和性质、 相似三角形的判定和性质、勾股定理等知识,解题的关键是学会
27、分类讨论,学会添加常用辅助线,属于中考常考题型.三、解答题17计算:(n-4)+|3 - tan60(寺)2.【考点】实数的运算;零指数幕;负整数指数幕;特殊角的三角函数值.【分析】直接利用零指数幕的性质以及绝对值的性质和特殊角的三角函数值、负整数指数幕的性质、二 次根式的性质分别化简求出答案.【解答】解:原式=1+3 - . :- 4+3 二=2.【点评】此题主要考查了实数运算,正确掌握相关性质进而化简是解题关键.18为了传承优秀传统文化,某校开展经典诵读”比赛活动,诵读材料有论语,三字经,弟子规(分别用字母 A , B, C 依次表示这三个诵读材料),将 A , B, C 这三个字母分别写
28、在 3 张完全 相同的不透明卡片的正面上,把这3 张卡片背面朝上洗匀后放在桌面上小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡 片,选手按各自抽取的卡片上的内容进行诵读比赛.(1 )小明诵读论语的概率是frac;(2 )请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.【考点】列表法与树状图法;概率公式.【分析】(1 )利用概率公式直接计算即可;(2 )列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【解答】解:(1)T诵读材料有论语,三字经,弟子规三种,1二小明诵读论语的概率 =
29、孑,故答案为:丄;3(2 )列表得:小明AB小亮CA(A, A)(A, B)(A, C)B(B, A)(B, B)(B, C)C(C, A)(C, B)(C, C)由表格可知,共有 9 种等可能性结果,其中小明和小亮诵读两个不同材料结果有【考点】菱形的判定;全等三角形的性质.【专题】证明题.【分析】(1)欲证明/ CEB= / CBE,只要证明/ CEB= / ABD , / CBE= / ABD 即可.(2) 先证明四边形 CEDB 是平行四边形,再根据 BC=BD 即可判定.【解答】证明;(1) ABCABD , / ABC= / ABD ,/ CE / BD , / CEB= / DBE
30、 ,6 种.所以小明和小亮诵读两个不同材料的概率【点评】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.19.如图, ABCABD,点 E 在边 AB 上,CE/ BD,连接 DE.求证:(1)/ CEB= / CBE ; / CEB= / CBE .(2) ) / ABCABD , BC=BD ,/ / CEB= / CBE , CE=CB , CE=BD/ CE / BD ,四边形 CEDB 是平行四边形,/ BC=BD ,四边形 CEDB 是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的
31、判定等知识,熟练掌握全等三角形的 性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.20.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况, 随机调查了该校 m 名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比丢沙包2010%打篮球60p%跳大绳n40%踢毽球4020%根据图表中提供的信息,解答下列问题:(1) m= 200, n= 80, p= 30;(2) 请根据以上信息直接补全条形统计图;(3)根据抽样
32、调查结果,请你估计该校 2000 名学生中有多少名学生最喜欢跳大绳.三三野言匚戏古丈 H 二弐刁舍 C 蛙厂豈【考点】条形统计图;用样本估计总体.【分析】(1)利用 2010%=200,即可得到 m 的值;用 2000%即可得到 n 的值,用 60 吃 00 即可得到p 的值.(2)根据 n 的值即可补全条形统计图;(3 )根据用样本估计总体,200040%,即可解答.【解答】解:(1) m=20 出 0%=200 ; n=200 40%=80 , 60-200=30% , p=30, 故答案为:200, 80, 30;(2)如图,学生垦喜滾范活貳项号的人款篆鞘i匿答:估计该校 2000 名学
33、生中有 800 名学生最喜欢跳大绳.【点评】本题考查了条形统计图、扇形统计图、概率公式,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.如图,在 ABC 中,以 AB 为直径的OO 分别于 BC, AC 相交于点 D, E, BD=CD,过点 D 作OO 的切线交边 AC 于点 F.(1)求证:DF 丄 AC ;(2 )若0O 的半径为 5, / CDF=30 求亦的长(结果保留n).DF 是OO 的切线,D 为切点, OD 丄 DF , / ODF=90 / BD=CD , OA=OB , OD 是厶 ABC 的中位线,OD / AC ,/
34、 CFD= / ODF=90 DF 丄 AC .(2)解:/ / CDF=30 由(1)得/ ODF=90 / ODB=18O - / CDF - / ODF=60 【考点】切线的性质;弧长的计算.【分析】(1)连接 0D ,由切线的性质即可得出 / ODF=90 再由 BD=CD , 的中位线,根据三角形中位线的性质即可得出,根据平行线的性质即可得出证出 DF 丄 AC ;(2)由/ CDF=30。以及 / ODF=90。即可算出 / ODB=60 再结合 OB=OD 根据弧长公式即可得出结论.OA=OB 可得出 OD 是厶 ABC/ CFD= / ODF=90 从而可得出 OBD 是等边三
35、角形,/ OB=OD ,OBD 是等边三角形, / BOD=60 【点评】本题考查了切线的性质、 弧长公式、平行线的性质、三角形中位线定理以及等边三角形的判断,解题的关键是:(1)求出/ CFD= / ODF=9O ( 2)找出OBD 是等边三角形本题属于中档题,难 度不大,解决该题型题目时,通过角的计算找出90。的角是关键.22倡导健康生活,推进全民健身,某社区要购进A , B 两种型号的健身器材若干套,A , B 两种型号健身器材的购买单价分别为每套310 元,460 元,且每种型号健身器材必须整套购买.(1)若购买 A , B 两种型号的健身器材共 50 套,且恰好支出 20000 元,
36、求 A , B 两种型号健身器材各 购买多少套?(2)若购买 A , B 两种型号的健身器材共 50 套,且支出不超过 18000 元,求 A 种型号健身器材至少要 购买多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设购买 A 种型号健身器材 x 套,B 型器材健身器材 y 套,根据: A, B 两种型号的健身 器材共 50 套、共支出 20000 元”列方程组求解可得;(2)设购买 A 型号健身器材 m 套,根据:A 型器材总费用+B 型器材总费用8000,列不等式求解可 得.1)设购买 A 种型号健身器材 x 套,B 型器材健身器材 y 套,fmi j 二门,答
37、:购买 A 种型号健身器材 20 套,B 型器材健身器材 30 套.(3) 设购买 A 型号健身器材 m 套,根据题意,得:310m+460 ( 50 - m) 8000,门兀R=60TI X55130 =180= n3的长=【解答】解:(根据题意,得:解得:- |,Tm 为整数,m 的最小值为 34,答:A 种型号健身器材至少要购买34 套.【点评】本题主要考查二元一次方程组与一元一次不等式的应用,审清题意得到相等关系或不等关系是 解题的关键.23.如图,在平面直角坐标系中, AOB 的顶点 0 为坐标原点,点 A 的坐标为(4, 0),点 B 的坐标 为(0, 1) ,点 C 为边 AB 的中点,正方形 OBDE 的顶点 E 在 x 轴的正半轴上,连接 CO , CD , CE.(1)线段 0C 的长为 fracsqrt172;(2)求证:CBDCOE ;(3) 将正方形 OBDE 沿 x 轴正方向平移得到正方形O1B1D1E1,其中点 O, B , D, E 的对应点分别为 点 O1,B1, D1, E1,连接 CD, C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 缠绕成型课程设计
- 国际象棋的课程设计
- 游戏人物鉴赏课程设计
- 中考生物考前必背知识手册(含习题详解)
- 美化文字微课程设计
- 统计软件课程设计预测
- 自然主题幼儿园课程设计
- 中风护理工作总结
- 电机顺序启动课程设计
- 2024年设备监理师考试题库含答案(基础题)
- 2024时事政治考试题库(100题)
- 2024地理知识竞赛试题
- 《城市轨道交通工程盾构吊装技术规程》(征求意见稿)
- 【新教材】统编版(2024)七年级上册语文期末复习课件129张
- 钦州市浦北县2022-2023学年七年级上学期期末语文试题
- 古典时期钢琴演奏传统智慧树知到期末考试答案章节答案2024年星海音乐学院
- 乐山市市中区2022-2023学年七年级上学期期末地理试题【带答案】
- 两人合伙人合作协议合同
- 苏教版一年级上册数学期末测试卷含答案(完整版)
- 2024年中考历史复习-中国古代史专项试题
- DZ/T 0462.5-2023 矿产资源“三率”指标要求 第5部分:金、银、铌、钽、锂、锆、锶、稀土、锗(正式版)
评论
0/150
提交评论